Journal of Synthetic Crystals, Volume. 51, Issue 2, 289(2022)
First-Principles Study on Electronic Structure and Elastic Properties of Na-Ti Co-Doped LiFePO4
[1] [1] DIMESSO L, SPANHEIMER C, JAEGERMANN W, et al. LiFePO4-3D carbon nanofiber composites as cathode materials for Li-ions batteries[J]. Journal of Applied Physics, 2012, 111(6): 064307.
[2] [2] ELLIS B L, LEE K T, NAZAR L F. Positive electrode materials for Li-ion and Li-batteries[J]. Chemistry of Materials, 2010, 22(3): 691-714.
[3] [3] LEE J, ZHOU W, IDROBO J C, et al. Vacancy-driven anisotropic defect distribution in the battery-cathode material LiFePO4[J]. Physical Review Letters, 2011, 107(8): 085507.
[4] [4] PROSINI P P, LISI M, ZANE D, et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4[J]. Solid State Ionics, 2002, 148(1/2): 45-51.
[5] [5] BARKER J, SAIDI M Y, SWOYER J L. Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method[J]. Electrochemical and Solid-State Letters, 2003, 6(3): A53.
[6] [6] DELMAS C, MACCARIO M, CROGUENNEC L, et al. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model[J]. Nature Materials, 2008, 7(8): 665-671.
[7] [7] WANG M, ZHANG W, LIU Y H, et al. Electrochemical performance of patterned LiFePO4 nano-electrode with a pristine amorphous layer[J]. Applied Physics Letters, 2014, 104(17): 171604.
[8] [8] LEE J, PENNYCOOK S J, PANTELIDES S T. Simultaneous enhancement of electronic and Li+ ion conductivity in LiFePO4[J]. Applied Physics Letters, 2012, 101(3): 033901.
[9] [9] BILECKA I, HINTENNACH A, ROSSELL M D, et al. Microwave-assisted solution synthesis of doped LiFePO4 with high specific charge and outstanding cycling performance[J]. Journal of Materials Chemistry, 2011, 21(16): 5881.
[10] [10] SHI S Q, LIU L J, OUYANG C Y, et al. Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations[J]. Physical Review B, 2003, 68(19): 195108.
[12] [12] LIN H, WEN Y W, ZHANG C X, et al. A GGA+U study of lithium diffusion in vanadium doped LiFePO4[J]. Solid State Communications, 2012, 152(12): 999-1003.
[14] [14] ZHANG H, TANG Y H, SHEN J Q, et al. Antisite defects and Mg doping in LiFePO4: a first-principles investigation[J]. Applied Physics A, 2011, 104(2): 529-537.
[15] [15] WANG Z L, SUN S R, XIA D G, et al. Investigation of electronic conductivity and occupancy sites of Mo doped into LiFePO4 by ab initio calculation and X-ray absorption spectroscopy[J]. The Journal of Physical Chemistry C, 2008, 112(44): 17450-17455.
[16] [16] HOU L X, TAO G H. A first-principles study of bulk and surface Sn-doped LiFePO4: the role of intermediate valence component in the multivalent doping[J]. Physica Status Solidi (b), 2017, 254(10): 1700041.
[17] [17] GU N Y, LI Y, LI C. Effects of Na and V co-doping on electrochemical performance of LiFePO4/C[J]. Advanced Materials Research, 2013, 724/725: 1067-1070.
[18] [18] LUO D F, HOU X H, YANG J H, et al. First principles studies on the electronics structures of (Li0.75Na0.25)(Fe0.75Mn0.25)PO4 cathode materials[J]. Rare Metal Materials and Engineering, 2012, 41(8): 1323-1326.
[19] [19] CHU-YING O Y, WANG D Y, SHI S Q, et al. First principles study on NaxLi1-x FePO4 as cathode material for rechargeable lithium batteries[J]. Chinese Physics Letters, 2006, 23(1): 61-64.
[22] [22] ANDERSSON A S, KALSKA B, HGGSTRM L, et al. Lithium extraction/insertion in LiFePO4: an X-ray diffraction and Mssbauer spectroscopy study[J]. Solid State Ionics, 2000, 130(1/2): 41-52.
[23] [23] MAHMOOD T, CAO C B, BUTT F K, et al. Elastic, electronic and optical properties of cotunnite TiO2 from first principles calculations[J]. Physica B: Condensed Matter, 2012, 407(22): 4495-4501.
[24] [24] JIANG C, SRINIVASAN S G. Unexpected strain-stiffening in crystalline solids[J]. Nature, 2013, 496(7445): 339-342.
[25] [25] WU Z J, HAO X F, LIU X J, et al. Structures and elastic properties of OsN2 investigated via first-principles density functional calculations[J]. Physical Review B, 2007, 75(5): 054115.
[27] [27] HILL R. The elastic behaviour of a crystalline aggregate[J]. Proceedings of the Physical Society Section A, 1952, 65(5): 349-354.
[28] [28] CARAVACA M A, MIO J C, PREZ V J, et al. Ab initiostudy of the elastic properties of single and polycrystal TiO2, ZrO2and HfO2in the cotunnite structure[J]. Journal of Physics: Condensed Matter, 2009, 21(1): 015501.
[29] [29] HAINES J, LGER J M, BOCQUILLON G. Synthesis and design of superhard materials[J]. Annual Review of Materials Research, 2001, 31: 1-23.
[31] [31] RANGANATHAN S I, OSTOJA-STARZEWSKI M. Mesoscale conductivity and scaling function in aggregates of cubic, trigonal, hexagonal, and tetragonal crystals[J]. Physical Review B, 2008, 77(21): 214308.
[32] [32] RAVINDRAN P, FAST L, KORZHAVYI P A, et al. Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi2[J]. Journal of Applied Physics, 1998, 84(9): 4891-4904.
Get Citation
Copy Citation Text
XU Zhenghao, WANG Fazhan, HE Haoping. First-Principles Study on Electronic Structure and Elastic Properties of Na-Ti Co-Doped LiFePO4[J]. Journal of Synthetic Crystals, 2022, 51(2): 289
Category:
Received: Dec. 13, 2021
Accepted: --
Published Online: Mar. 24, 2022
The Author Email: Zhenghao XU (604517090@qq.com)
CSTR:32186.14.