Chinese Journal of Lasers, Volume. 47, Issue 6, 604003(2020)
An Adaptive Edge Detection Method Based on Local Edge Feature Descriptor
Fig. 2. Normal vector of feature region and non-feature region. (a) Feature area; (b) non-feature area
Fig. 5. star model and local feature parameter distribution of the model. (a) star model; (b) LEFD distribution
Fig. 6. fandisk model and local feature parameter distribution map of the model. (a) fandisk model; (b) LEFD distribution
Fig. 9. Comparison of results of complex models. (a)-(c) Original point cloud; (d)-(f) results of BE method;(g)-(i) results of the method in literature[10]; (j)-(l) results of the method in literature[10]; (m)-(o) results of our method
Fig. 10. Comparison of results of simple models. (a)-(c) Original point cloud; (d)-(f) results of BE method;(g)-(i) results of the method in literature[10]; (j)-(l) results of the method in literature[10]; (m)-(o) results of our method
Fig. 12. Results of noise immunity. (a) fandisk model, adding noise with standard deviation of 0.5%; (b) fandisk model, adding noise with standard deviation of 2%; (c) bunny model, adding noise with standard deviation of 0.5%; (d) bunny model, adding noise with standard deviation of 2%
|
|
|
Get Citation
Copy Citation Text
Gao Jiayue, Xu Hongli, Shao Kailiang, Yin Hui. An Adaptive Edge Detection Method Based on Local Edge Feature Descriptor[J]. Chinese Journal of Lasers, 2020, 47(6): 604003
Category: Measurement and metrology
Received: Dec. 24, 2019
Accepted: --
Published Online: Jun. 3, 2020
The Author Email: Hongli Xu (hlxu@bjtu.edu.cn)