Frontiers of Optoelectronics, Volume. 15, Issue 1, 12200(2022)

Quantum prospects for hybrid thin-film lithium niobate on silicon photonics

Jeremy C. Adcock* and Yunhong Ding
Author Affiliations
  • Center for Silicon Photonics for Optical Communication, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
  • show less
    References(86)

    [1] [1] Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    [2] [2] Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G.S.L., Buell, D.A., Burkett, B., Chen, Y., Chen, Z., Chiaro, B., Collins, R., Courtney, W., Dunsworth, A., Farhi, E., Foxen, B., Fowler, A., Gidney, C., Giustina, M., Graff, R., Guerin, K., Habegger, S., Harrigan, M.P., Hartmann, M.J., Ho, A., Hoffmann, M., Huang, T., Humble, T.S., Isakov, S.V., Jeffrey, E., Jiang, Z., Kafri, D., Kechedzhi, K., Kelly, J., Klimov, P.V., Knysh, S., Korotkov, A., Kostritsa, F., Landhuis, D., Lindmark, M., Lucero, E., Lyakh, D., Mandrà, S., McClean, J.R., McEwen, M., Megrant, A., Mi, X., Michielsen, K., Mohseni, M., Mutus, J., Naaman, O., Neeley, M., Neill, C., Niu, M.Y., Ostby, E., Petukhov, A., Platt, J.C., Quintana, C., Rieffel, E.G., Roushan, P., Rubin, N.C., Sank, D., Satzinger, K.J., Smelyanskiy, V., Sung, K.J., Trevithick, M.D., Vainsencher, A., Villalonga, B., White, T., Yao, Z.J., Yeh, P., Zalcman, A., Neven, H., Martinis, J.M.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)

    [3] [3] Zhong, H.S., Deng, Y.H., Qin, J., Wang, H., Chen, M.C., Peng, L.C., Luo, Y.H., Wu, D., Gong, S.Q., Su, H., Hu, Y.: Phase-programmable gaussian boson sampling using stimulated squeezed light. arxiv preprint arxiv: 2106. 15534 (2021)

    [4] [4] Wu, Y.L., Bao, W.S., Cao, S.R., Chen, F.S., Chen, M.C., Chen, X.W., Chung, T.S., Deng, H., Du, Y.J., Fan, D.J., Gong, M., Guo, C., Guo, C., Guo, S.J., Han, L.C., Hong, L.Y., Huang, H.L., Huo, Y.H., Li, L.P., Li, N., Li, S.W., Li, Y., Liang, F.T., Lin, C., Lin, J., Qian, H.R., Qiao, D., Rong, H., Su, H., Sun, L.H., Wang, L.Y., Wang, S.Y., Wu, D.C., Xu, Y., Yan, K., Yang, W.F., Yang, Y., Ye, Y.S., Yin, J.H., Ying, C., Yu, J.L., Zha, C., Zhang, C., Zhang, H.B., Zhang, K.L., Zhang, Y.M., Zhao, H., Zhao, Y.W., Zhou, L., Zhu, Q.L., Lu, C.Y., Peng, C.Z., Zhu, X.B., Pan, J.W.: Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 127(18), 180501 (2021)

    [5] [5] Liao, S.K., Cai, W.Q., Liu, W.Y., Zhang, L., Li, Y., Ren, J.G., Yin, J., Shen, Q., Cao, Y., Li, Z.P., Li, F.Z., Chen, X.W., Sun, L.H., Jia, J.J., Wu, J.C., Jiang, X.J., Wang, J.F., Huang, Y.M., Wang, Q., Zhou, Y.L., Deng, L., Xi, T., Ma, L., Hu, T., Zhang, Q., Chen, Y.A., Liu, N.L., Wang, X.B., Zhu, Z.C., Lu, C.Y., Shu, R., Peng, C.Z., Wang, J.Y., Pan, J.W.: Satellite-to-ground quantum key distribution. Nature 549(7670), 43–47 (2017)

    [6] [6] Ren, J.G., Xu, P., Yong, H.L., Zhang, L., Liao, S.K., Yin, J., Liu, W.Y., Cai, W.Q., Yang, M., Li, L., Yang, K.X., Han, X., Yao, Y.Q., Li, J., Wu, H.Y., Wan, S., Liu, L., Liu, D.Q., Kuang, Y.W., He, Z.P., Shang, P., Guo, C., Zheng, R.H., Tian, K., Zhu, Z.C., Liu, N.L., Lu, C.Y., Shu, R., Chen, Y.A., Peng, C.Z., Wang, J.Y., Pan, J.W.: Ground-to-satellite quantum teleportation. Nature 549(7670), 70–73 (2017)

    [7] [7] Giustina, M., Versteegh, M.A.M., Wengerowsky, S., Handsteiner, J., Hochrainer, A., Phelan, K., Steinlechner, F., Kofler, J., Larsson, J., Abellán, C., Amaya, W., Pruneri, V., Mitchell, M.W., Beyer, J., Gerrits, T., Lita, A.E., Shalm, L.K., Nam, S.W., Scheidl, T., Ursin, R., Wittmann, B., Zeilinger, A.: Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115(25), 250401 (2015)

    [8] [8] Hensen, B., Bernien, H., Dréau, A.E., Reiserer, A., Kalb, N., Blok, M.S., Ruitenberg, J., Vermeulen, R.F., Schouten, R.N., Abellán, C., Amaya, W., Pruneri, V., Mitchell, M.W., Markham, M., Twitchen, D.J., Elkouss, D., Wehner, S., Taminiau, T.H., Hanson, R.: Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526(7575), 682–686 (2015)

    [9] [9] Shalm, L.K., Meyer-Scott, E., Christensen, B.G., Bierhorst, P., Wayne, M.A., Stevens, M.J., Gerrits, T., Glancy, S., Hamel, D.R., Allman, M.S., Coakley, K.J., Dyer, S.D., Hodge, C., Lita, A.E., Verma, V.B., Lambrocco, C., Tortorici, E., Migdall, A.L., Zhang, Y., Kumor, D.R., Farr, W.H., Marsili, F., Shaw, M.D., Stern, J.A., Abellán, C., Amaya, W., Pruneri, V., Jennewein, T., Mitchell, M.W., Kwiat, P.G., Bienfang, J.C., Mirin, R.P., Knill, E., Nam, S.W.: Strong loophole-free test of local realism. Phys. Rev. Lett. 115(25), 250402 (2015)

    [10] [10] Bromley, T.R., Arrazola, J.M., Jahangiri, S., Izaac, J., Quesada, N., Gran, A.D., Schuld, M., Swinarton, J., Zabaneh, Z., Killoran, N.: Applications of near-term photonic quantum computers: software and algorithms. Quan. Sci. Technol. 5(3), 034010 (2020)

    [11] [11] Wang, J., Sciarrino, F., Laing, A., Thompson, M.G.: Integrated photonic quantum technologies. Nat. Photon. 14(5), 273–284 (2020)

    [12] [12] Silverstone, J.W., Wang, J., Bonneau, D., Sibson, P., Santagati, R., Erven, C., O'Brien, J.L., Thompson, M.G.: Silicon quantum photonics. In: Proceedings of International Conference on Optical MEMS and Nanophotonics (OMN). Singapore: IEEE (2016)

    [13] [13] Adcock, J.C., Bao, J., Chi, Y., Chen, X., Bacco, D., Gong, Q., Oxenlowe, L.K., Wang, J., Ding, Y.: Advances in silicon quantum photonics. IEEE J. Sel. Top. Quantum Electron. 27(2), 1–24 (2021)

    [14] [14] Sibson, P., Kennard, J.E., Stanisic, S., Erven, C., O’Brien, J.L., Thompson, M.G.: Integrated silicon photonics for high-speed quantum key distribution. Optica 4(2), 172–177 (2017)

    [15] [15] Llewellyn, D., Ding, Y., Faruque, I.I., Paesani, S., Bacco, D., Santagati, R., Qian, Y.J., Li, Y., Xiao, Y.F., Huber, M., Malik, M., Sinclair, G.F., Zhou, X., Rottwitt, K., O’Brien, J.L., Rarity, J.G., Gong, Q., Oxenlowe, L.K., Wang, J., Thompson, M.G.: Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat. Phys. 16(2), 148–153 (2020)

    [16] [16] Vigliar, C., Paesani, S., Ding, Y.H., Adcock, J.C., Wang, J.W., Morley-Short, S., Bacco, D., Oxenlowe, L.K., Thompson, M.G., Rarity, J.G., Laing, A.: Error protected qubits in a silicon photonic chip. Nat. Phys. 17(10), 1137–1143 (2020)

    [17] [17] Paesani, S., Ding, Y., Santagati, R., Chakhmakhchyan, L., Vigliar, C., Rottwitt, K., Oxenlowe, L.K., Wang, J., Thompson, M.G., Laing, A.: Generation and sampling of quantum states of light in a silicon chip. Nat. Phys. 15(9), 925–929 (2019)

    [18] [18] Ono, T., Sinclair, G.F., Bonneau, D., Thompson, M.G., Matthews, J.C.F., Rarity, J.G.: Observation of nonlinear interference on a silicon photonic chip. Opt. Lett. 44(5), 1277–1280 (2019)

    [19] [19] Rudolph, T.: Why I am optimistic about the silicon-photonic route to quantum computing. APL Photon. 2(3), 030901 (2017)

    [20] [20] Levy, M., Osgood, R.M., Liu, R., Cross, L.E., Cargill, G.S.I.I.I., Kumar, A., Bakhru, H.: Fabrication of single-crystal lithium niobate films by crystal ion slicing. Appl. Phys. Lett. 73(16), 2293–2295 (1998)

    [21] [21] Rabiei, P., Ma, J., Khan, S., Chiles, J., Fathpour, S.: Heterogeneous lithium niobate photonics on silicon substrates. Opt. Express 21(21), 25573–25581 (2013)

    [22] [22] Poberaj, G., Hu, H., Sohler, W., Günter, P.: Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev. 6(4), 488–503 (2012)

    [23] [23] Bazzan, M., Sada, C.: Optical waveguides in lithium niobate: recent developments and applications. Appl. Phys. Rev. 2(4), 040603 (2015)

    [24] [24] Weigel, P.O., Zhao, J., Fang, K., Al-Rubaye, H., Trotter, D., Hood, D., Mudrick, J., Dallo, C., Pomerene, A.T., Starbuck, A.L., DeRose, C.T., Lentine, A.L., Rebeiz, G., Mookherjea, S.: Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Opt. Express 26(18), 23728–23739 (2018)

    [25] [25] Sakashita, Y., Segawa, H.: Preparation and characterization of LiNbO3 thin films produced by chemical-vapor deposition. J. Appl. Phys. 77(11), 5995–5999 (1995)

    [26] [26] Nakata, Y., Gunji, S., Okada, T., Maeda, M.: Fabrication of LiNbO3 thin films by pulsed laser deposition and investigation of nonlinear properties. Appl. Phys. A 79(4–6), 1279–1282 (2004)

    [27] [27] Gitmans, F., Sitar, Z., Günter, P.: Growth of tantalum oxide and lithium tantalate thin films by molecular beam epitaxy. Vacuum 46(8–10), 939–942 (1995)

    [28] [28] Lansiaux, X., Dogheche, E., Remiens, D., Guilloux-viry, M., Perrin, A., Ruterana, P.: LiNbO3 thick films grown on sapphire by using a multistep sputtering process. J. Appl. Phys. 90(10), 5274–5277 (2001)

    [29] [29] Bruel, M.: Silicon on insulator material technology. Electron. Lett. 31(14), 1201–1202 (1995)

    [30] [30] Mercante, A.J., Yao, P., Shi, S., Schneider, G., Murakowski, J., Prather, D.W.: 110 GHz CMOS compatible thin film LiNbO3 modulator on silicon. Opt. Express 24(14), 15590–15595 (2016)

    [31] [31] Wang, C., Zhang, M., Chen, X., Bertrand, M., Shams-Ansari, A., Chandrasekhar, S., Winzer, P., Loncar, M.: Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562(7725), 101–104 (2018)

    [32] [32] Wang, C., Zhang, M., Stern, B., Lipson, M., Loncar, M.: Nanophotonic lithium niobate electro-optic modulators. Opt. Express 26(2), 1547–1555 (2018)

    [33] [33] He, M., Xu, M., Ren, Y., Jian, J., Ruan, Z., Xu, Y., Gao, S., Sun, S., Wen, X., Zhou, L., Liu, L., Guo, C., Chen, H., Yu, S., Liu, L., Cai, X.: High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond. Nat. Photonics 13(5), 359–364 (2019)

    [34] [34] Zhang, M., Wang, C., Cheng, R., Shams-Ansari, A., Loncar, M.: Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4(12), 1536–1537 (2017)

    [35] [35] Zhang, M., Wang, C., Hu, Y., Shams-Ansari, A., Ren, T., Fan, S., Loncar, M.: Electronically programmable photonic molecule. Nat. Photonics 13(1), 36–40 (2019)

    [36] [36] Wang, C., Zhang, M., Yu, M., Zhu, R., Hu, H., Loncar, M.: Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun. 10(1), 978 (2019)

    [37] [37] Xu, M., He, M., Zhang, H., Jian, J., Pan, Y., Liu, X., Chen, L., Meng, X., Chen, H., Li, Z., Xiao, X., Yu, S., Yu, S., Cai, X.: High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun. 11(1), 3911 (2020)

    [38] [38] Pohl, D., Reig Escalé, M., Madi, M., Kaufmann, F., Brotzer, P., Sergeyev, A., Guldimann, B., Giaccari, P., Alberti, E., Meier, U., Grange, R.: An integrated broadband spectrometer on thin-film lithium niobate. Nat. Photonics 14(1), 24–29 (2020)

    [39] [39] Sun, D., Zhang, Y., Wang, D., Song, W., Liu, X., Pang, J., Geng, D., Sang, Y., Liu, H.: Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications. Light Sci. Appl. 9(1), 197 (2020)

    [40] [40] Li, H., Ma, B.: Research development on fabrication and optical properties of nonlinear photonic crystals. Front. Optoelectron. 13(1), 35–49 (2020)

    [41] [41] Chen, F.: Laser-written three dimensional nonlinear photonic crystals. Front. Optoelectron. 12(4), 342–343 (2019)

    [42] [42] Lu, J., Surya, J.B., Liu, X., Bruch, A.W., Gong, Z., Xu, Y., Tang, H.X.: Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250000%/W. Optica 6(12), 1455–1460 (2019)

    [43] [43] Liu, X., Ying, P., Zhong, X., Xu, J., Han, Y., Yu, S., Cai, X.: Highly efficient thermo-optic tunable micro-ring resonator based on an LNOI platform. Opt. Lett. 45(22), 6318–6321 (2020)

    [44] [44] Thomson, D., Zilkie, A., Bowers, J.E., Komljenovic, T., Reed, G.T., Vivien, L., Marris-Morini, D., Cassan, E., Virot, L., Fédéli, J.M., Hartmann, J.M., Schmid, J.H., Xu, D.X., Boeuf, F., O’Brien, P., Mashanovich, G.Z., Nedeljkovic., M.: Roadmap on silicon photonics. J. Opt. 18(7), 073003 (2016)

    [45] [45] Treyz, G.V., May, P.G., Halbout, J.M.: Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect. Appl. Phys. Lett. 59(7), 771–773 (1991)

    [46] [46] Liu, A., Liao, L., Rubin, D., Nguyen, H., Ciftcioglu, B., Chetrit, Y., Izhaky, N., Paniccia, M.: High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt. Express 15(2), 660–668 (2007)

    [47] [47] Ding, Y., Peucheret, C., Ou, H., Yvind, K.: Fully etched apodized grating coupler on the SOI platform with -0.58 dB coupling efficiency. Opt. Lett. 39(18), 5348–5350 (2014)

    [48] [48] Notaros, J., Pavanello, F., Wade, M. T., Gentry, C. M., Atabaki, A., Alloatti, L., Ram, R. J., Milos, A. P. Ultra-efficient CMOS fiber-to-chip grating couplers. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC). Anaheim: IEEE (2016)

    [49] [49] Hoppe, N., Zaoui, W.S., Rathgeber, L., Wang, Y., Klenk, R.H., Vogel, W., Kaschel, M., Portalupi, S.L., Burghartz, J., Berroth, M.: Ultra-efficient silicon-on-insulator grating couplers with backside metal mirrors. IEEE J. Sel. Top. Quantum Electron. 26(2), 1–6 (2020)

    [50] [50] Horikawa, T., Shimura, D., Mogami, T.: Low-loss silicon wire waveguides for optical integrated circuits. MRS Commun. 6(1), 9–15 (2016)

    [51] [51] Biberman, A., Shaw, M.J., Timurdogan, E., Wright, J.B., Watts, M.R.: Ultralow-loss silicon ring resonators. Opt. Lett. 37(20), 4236–4238 (2012)

    [52] [52] Liu, Y., Wu, C., Gu, X., Kong, Y., Yu, X., Ge, R., Cai, X., Qiang, X., Wu, J., Yang, X., Xu, P.: High-spectral-purity photon generation from a dual-interferometer-coupled silicon microring. Opt. Lett. 45(1), 73–76 (2020)

    [53] [53] Paesani, S., Borghi, M., Signorini, S., Mainos, A., Pavesi, L., Laing, A.: Near-ideal spontaneous photon sources in silicon quantum photonics. Nat. Commun. 11(1), 2505 (2020)

    [54] [54] Christensen, J.B., Koefoed, J.G., Rottwitt, K., McKinstrie, C.: Engineering spectrally unentangled photon pairs from nonlinear microring resonators through pump manipulation. arxiv preprint arxiv: 1711. 02401 (2017)

    [55] [55] Vernon, Z., Menotti, M., Tison, C.C., Steidle, J.A., Fanto, M.L., Thomas, P.M., Preble, S.F., Smith, A.M., Alsing, P.M., Liscidini, M., Sipe, J.E.: Truly unentangled photon pairs without spectral filtering. Opt. Lett. 42(18), 3638–3641 (2017)

    [56] [56] Zhu, H., Li, Q., Han, H., Li, Z., Zhang, X., Zhang, H., Hu, H.: Hybrid mono-crystalline silicon and lithium niobate thin films. Chin. Opt. Lett. 19, 060017 (2021)

    [57] [57] Weigel, P.O., Savanier, M., DeRose, C.T., Pomerene, A.T., Starbuck, A.L., Lentine, A.L., Stenger, V., Mookherjea, S.: Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics. Sci. Rep. 6(1), 22301 (2016)

    [58] [58] Krasnokutska, I., Chapman, R.J., Tambasco, J.J., Peruzzo, A.: High coupling efficiency grating couplers on lithium niobate on insulator. Opt. Express 27(13), 17681–17685 (2019)

    [59] [59] Chen, B., Ruan, Z., Hu, J., Wang, J., Lu, C., Lau, A.P.T., Guo, C., Chen, K., Chen, P., Liu, L.: Two-dimensional grating coupler on an X-cut lithium niobate thin-film. Opt. Express 29(2), 1289–1295 (2021)

    [60] [60] Ruan, Z., Hu, J., Xue, Y., Liu, J., Chen, B., Wang, J., Chen, K., Chen, P., Liu, L.: Metal based grating coupler on a thin-film lithium niobate waveguide. Opt. Express 28(24), 35615–35621 (2020)

    [61] [61] Bowers, J. E., Liu, A. Y. A comparison of four approaches to photonic integration. In: Proceedings of Optical Fiber Communication Conference. Los Angeles: IEEE (2017)

    [62] [62] Ogiso, Y., Ozaki, J., Ueda, Y., Kashio, N., Kikuchi, N., Yamada, E., Tanobe, H., Kanazawa, S., Yamazaki, H., Ohiso, Y., Fujii, T., Kohtoku, M.: Over 67 GHz bandwidth and 15 V Vπ InPbased optical IQ modulator with nipn heterostructure. J. Lightwave Technol. 35(8), 1450–1455 (2017)

    [63] [63] Ottaviano, L., Pu, M., Semenova, E., Yvind, K.: Low-loss highconfinement waveguides and microring resonators in AlGaAson-insulator. Opt. Lett. 41(17), 3996–3999 (2016)

    [64] [64] Burla, M., Hoessbacher, C., Heni, W., Haffner, C., Fedoryshyn, Y., Werner, D., Watanabe, T., Massler, H., Elder, D., Dalton, L., Leuthold, J.: 500 GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics. APL Photon. 4(5), 056106 (2019)

    [65] [65] Zhong, C., Li, J., Lin, H.: Graphene-based all-optical modulators. Front. Optoelectron. 13(2), 114–128 (2020)

    [66] [66] Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409(6816), 46–52 (2001)

    [67] [67] Bartolucci, S., Birchall, P., Bombin, H., Cable, H., Dawson, C., Gimeno-Segovia, M., Johnston, E., Kieling, K., Nickerson, N., Pant, M., Pastawski, F., Rudolph, T., Sparrow, C.: Fusion-based quantum computation. arxiv preprint arxiv: 2101. 09310 (2021)

    [68] [68] Takeda, S., Furusawa, A.: Toward large-scale fault-tolerant universal photonic quantum computing. APL Photon. 4(6), 060902 (2019)

    [69] [69] Bourassa, J.E., Alexander, R.N., Vasmer, M., Patil, A., Tzitrin, I., Matsuura, T., Su, D., Baragiola, B.Q., Guha, S., Dauphinais, G., Sabapathy, K.K., Menicucci, N.C., Dhand, I.: Blueprint for a scalable photonic fault-tolerant quantum computer. Quantum 5, 392 (2021)

    [70] [70] Azuma, K., Tamaki, K., Lo, H.K.: All-photonic quantum repeaters. Nat. Commun. 6(1), 6787 (2015)

    [71] [71] Adcock, J.C., Morley-Short, S., Silverstone, J.W., Thompson, M.G.: Hard limits on the postselectability of optical graph states. Quan. Sci. Technol. 4, 015010 (2018)

    [72] [72] Migdall, A.L., Branning, D., Castelletto, S.: Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source. Phys. Rev. A 66(5), 053805 (2002)

    [73] [73] Pittman, T.B., Jacobs, B.C., Franson, P.: Single photons on pseudodemand from stored parametric down-conversion. Phys. Rev. A 66(4), 042303 (2002)

    [74] [74] Bonneau, D., Mendoza, G.J., O’Brien, J.L., Thompson, M.G.: Effect of loss on multiplexed single-photon sources. New J. Phys. 17(4), 043057 (2015)

    [75] [75] Fumihiro, K., Kwiat, P.: High-efficiency single-photon generation via large-scale active time multiplexing. Sci. Adv. 5(10), eaaw8586 (2019)

    [76] [76] Collins, M.J., Xiong, C., Rey, I.H., Vo, T.D., He, J., Shahnia, S., Reardon, C., Krauss, T.F., Steel, M.J., Clark, A.S., Eggleton, B.J.: Integrated spatial multiplexing of heralded single-photon sources. Nat. Commun. 4(1), 2582 (2013)

    [77] [77] Joshi, C., Farsi, A., Clemmen, S., Ramelow, S., Gaeta, A.L.: Frequency multiplexing for quasi-deterministic heralded singlephoton sources. Nat. Commun. 9(1), 847 (2018)

    [78] [78] Thomas, S., Billard, M., Coste, N., Wein, S., Ollivier, P., Krebs, O., Tazaart, L., Harouri, A., Lemaitre, A., Sagnes, I., Anton, C., Lanco, L., Somaschi, N., Loredo, J., Senellart, P.: Bright polarized single-photon source based on a linear dipole. Phys. Rev. Lett. 126(23), 233601 (2021)

    [79] [79] Tomm, N., Javadi, A., Antoniadis, N.O., Najer, D., Lobl, M.C., Korsch, A.R., Schott, R., Valentin, S.R., Wieck, A.D., Ludwig, A., Warburton, R.J.: A bright and fast source of coherent single photons. Nat. Nanotechnol. 16(4), 399–403 (2021)

    [80] [80] Bartolucci, S., Birchall, P., Gimeno-Segovia, M., Johnston, E., Kieling, K., Mihir Pant, M., Rudolph, T., Smith, J., Sparrow, C., Vidrighin, M.: Creation of entangled photonic states using linear optics. arxiv preprint arxiv: 2106. 13825 (2021)

    [81] [81] Paesani, S., Bulmer, J., Jones, A., Santagati, R., Laing, A.: Scheme for universal high-dimensional quantum computation with linear optics. Phys. Rev. Lett. 126(23), 230504 (2021)

    [82] [82] Zhang, X., Bell, B., Pelusi, M., He, J., Geng, W., Kong, Y., Zhang, P., Xiong, C., Eggleton, B.J.: High repetition rate correlated photon pair generation in integrated silicon nanowires. Appl. Opt. 56(30), 8420–8424 (2017)

    [83] [83] Münzberg, J., Vetter, A., Beutel, F., Hartmann, W., Ferrari, S., Pernice, W.H.P., Rockstuhl, C.: Superconducting nanowire single-photon detector implemented in a 2D photonic crystal cavity. Optica 5(5), 658–665 (2018)

    [84] [84] Tasker J F, Frazer J, Ferranti G, Allen F, Brunel L, Tanzilli S, D'Auria V, Matthews J. 9~GHz measurement of squeezed light by interfacing silicon photonics and integrated electronics. arxiv preprint arxiv: 2009. 14318 (2020)

    [85] [85] Eltes, F., Villarreal-Garcia, G.E., Caimi, D., Siegwart, H., Gentile, A.A., Hart, A., Stark, P., Marshall, G.D., Thompson, M.G., Barreto, J., Fompeyrine, J., Abel, S.: An integrated optical modulator operating at cryogenic temperatures. Nat. Mater. 19(11), 1164–1168 (2020)

    [86] [86] Li, Y., Lan, T., Li, J., Wang, Z.: High-efficiency edge-coupling based on lithium niobate on an insulator wire waveguide. Appl. Opt. 59(22), 6694–6701 (2020)

    Tools

    Get Citation

    Copy Citation Text

    Jeremy C. Adcock, Yunhong Ding. Quantum prospects for hybrid thin-film lithium niobate on silicon photonics[J]. Frontiers of Optoelectronics, 2022, 15(1): 12200

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: MINI REVIEW

    Received: Jul. 2, 2021

    Accepted: Aug. 16, 2021

    Published Online: Aug. 25, 2022

    The Author Email: Jeremy C. Adcock (jerad@fotonik.dtu.dk)

    DOI:10.1007/s12200-022-00006-7

    Topics