Acta Photonica Sinica, Volume. 54, Issue 3, 0323001(2025)
Mode Selecting Switch Based on Cascaded MMI Couplers
[1] TAUBENBLATT M A. Optical interconnects for high-performance computing[J]. Journal of Lightwave Technology, 30, 448-457(2012).
[2] BENNER A F, IGNATOWSKI M, KASH J A et al. Exploitation of optical interconnects in future server architectures[J]. IBM Journal of Research and Development, 49, 755-775(2005).
[3] BENNER A F, KUCHTA D M, PEPELJUGOSKI P K et al. Optics for high-performance servers and supercomputers[C], OTuH1(2010).
[4] KIM J, DALLY W J, SCOTT S et al. Technology-driven, highly-scalable dragonfly topology[C], 1063-6897(2008).
[5] MORIOKA T, AWAJI Y, RYF R et al. Enhancing optical communications with brand new fibers[J]. IEEE Communications Magazine, 50, S31-S42(2012).
[6] MORIOKA T. New generation optical infrastructure technologies: “EXAT initiative” towards 2020 and beyond[C], 2166-8884(2009).
[7] ESSIAMBRE R J, KRAMER G, WINZER P J et al. Capacity limits of optical fiber networks[J]. Journal of Lightwave Technology, 28, 662-701(2010).
[8] LUO L W, OPHIR N, CHEN C P et al. WDM-compatible mode-division multiplexing on a silicon chip[J]. Nature Communications, 5, 3069(2014).
[9] HUANG Yingyan, XU Guoyang, HO S T. An ultracompact optical mode order converter[J]. IEEE Photonics Technology Letters, 18, 2281-2283(2006).
[10] DONG Po, XIE Chongjin, CHEN Long et al. 112-Gb/s monolithic PDM-QPSK modulator in silicon[J]. Optics Express, 20, B624-B629(2012).
[11] RYF R, RANDEL S, GNAUCK A H et al. Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 MIMO processing[J]. Journal of Lightwave Technology, 30, 521-531(2012).
[12] AWAJI Y, WADA N, TODA Y. Demonstration of spatial mode division multiplexing using Laguerre-Gaussian mode beam in telecom-wavelength[C], 1092-8081(2010).
[13] SALZ J. Digital transmission over cross-coupled linear channels[J]. AT&T Technical Journal, 64, 1147-1159(1985).
[14] RANDEL S, RYF R, SIERRA A et al. 6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization[J]. Optics Express, 19, 16697-16707(2011).
[15] TAKARA H. 01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency[C], 2012, Th.3.C.1(1).
[16] FONTAINE N K. 30×30 MIMO transmission over 15 spatial modes[C], Th5C.1(2015).
[17] IGARASHI K. 114 space-division-multiplexed transmission over 9.8-km weakly-coupled-6-mode uncoupled-19-core fibers[C], 978-1-5575-2937-4.
[18] PRITI R B, BAZARGANI H P, XIONG Yule et al. Mode selecting switch using multimode interference for on-chip optical interconnects[J]. Optics Letters, 42, 4131-4134(2017).
[19] GAO Yang, SUN Xiaoqiang, LI Pengfei et al. Polymer mode selecting switch based on cascaded MMI couplers[J]. IEEE Photonics Technology Letters, 33, 147-150(2021).
[20] MASANORI T, YASUYOSHI U, SHINTARO Y et al. Compact and low-loss coherent mixer based on high Δ ZrO2-SiO2 PLC[J]. Journal of Lightwave Technology, 32, 3081-3088(2014).
[21] HANZAWA N, SAITOH K, SAKAMOTO T et al. PLC-based four-mode multi/demultiplexer with LP11 mode rotator on one chip[J]. Journal of Lightwave Technology, 3, 1161(2015).
[22] SOLDANO L B, PENNINGS E C M. Optical multi-mode interference devices based on self-imaging principles and applications[J]. Journal of Lightwave Technology, 13, 615-627(1995).
[23] COONEY K, PETERS F H. Analysis of multimode interferometers[J]. Optics Express, 24, 22481-22515(2016).
[24] CHUNG L W, LEE S L, LIN Y J. Principles and application of reduced beat length in MMI couplers[J]. Optics Express, 14, 8753-8764(2006).
[25] PRITI R B, LIBOIRON-LADOUCEUR O. A reconfigurable multimode demultiplexer/switch for mode-multiplexed silicon photonics interconnects[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 8300810(2018).
[26] XIE Nan, HASHIMOTO T, UTAKA K. Very low power operation of compact MMI polymer thermooptic switch[J]. IEEE Photonics Technology Letters, 21, 1335-1337(2009).
[27] XIE Nan, HASHIMOTO T, UTAKA K. Very low-power, polarization independent, and high-speed polymer thermooptic switch[J]. Journal of Lightwave Technology, 21, 1861-1863(2009).
[28] ZI Xingzhuang, WANG Lingfang, CHEN Kaixin et al. Mode-selective switch based on thermo-optic asymmetric directional coupler[J]. Journal of Lightwave Technology, 30, 618-621(2018).
[29] HUANG Quandong, JIN Wei, CHIANG K S. Broadband mode switch based on a three-dimensional waveguide Mach-Zehnder interferometer[J]. Optics Letter, 42, 4877-4880(2017).
[30] LIN Baizhu, WANG Xibin, LV Jiawen et al. Low-power-consumption polymer Mach-Zehnder interferometer thermo-optic switch at 532 nm based on a triangular waveguide[J]. Optics Letter, 45, 4448-4451(2020).
[31] HUANG Quandong, CHIANG K S, JIN Wei. Thermo-optically controlled vertical waveguide directional couplers for mode-selective switching[J]. IEEE Photonics Technology Letters, 10, 6602714(2018).
[32] WANG Lilei, ZHANG Daming, NIU Donghai et al. Polymeric waveguide MZI thermo-optic mode switch based on asymmetric directional coupler[J]. IEEE Photonics Technology Letters, 32, 200-203(2020).
Get Citation
Copy Citation Text
Manzhuo WANG, Zhentao YAO, Chaoyang SUN, Yue ZHANG, Jimin FANG, Xiaoqiang SUN, Yuanda WU, Daming ZHANG. Mode Selecting Switch Based on Cascaded MMI Couplers[J]. Acta Photonica Sinica, 2025, 54(3): 0323001
Category: Optical Device
Received: Sep. 6, 2024
Accepted: Nov. 1, 2024
Published Online: Apr. 22, 2025
The Author Email: Xiaoqiang SUN (sunxq@jlu.edu.cn)