Infrared Technology, Volume. 47, Issue 7, 823(2025)
Self-Ensembling Network Model and Its Hyperspectral Object Recognition Under Regularization Constraint
[2] [2] Bishop C A, LIU J G, Mason P J. Hyperspectral remote sensing for mineral exploration in Pulang, Yunnan Province, China[J].International Journal of Remote Sensing, 2011,32(9): 2409-2426.
[4] [4] CHEN Y, LIN Z, ZHAO X, et al. Deep learning-based classification of hyperspectral data[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014,7(6): 2094-2107.
[5] [5] YUE J, ZHAO W, MAO S, et al. Spectral–spatial classification of hyperspectral images using deep convolutional neural networks[J].Remote Sensing Letters, 2015,6(6): 468-477.
[6] [6] CHEN Y, JIANG H, LI C, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J].IEEE Transactions on Geoscience and Remote Sensing, 2016,54(10): 6232-6251.
[7] [7] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[8] [8] HUANG G, LIU Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
[12] [12] MA X, WANG H, WANG J. Semi-supervised classification for hyperspectral image based on multi-decision labeling and deep feature learning[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2016,120: 99-107.
[13] [13] WU H, Prasad S. Semi-supervised deep learning using pseudo labels for hyperspectral image classification[J].IEEE Transactions on Image Processing, 2017,27(3): 1259-1270.
[15] [15] XU Y, DU B, ZHANG L. Robust self-ensembling network for hyperspectral image classification[J].IEEE Transactions on Neural Networks and Learning Systems, 2022(3): 3780-3793.
[16] [16] Tarvainen A, Valpola H. Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results[J].Advances in Neural Information Processing Systems, 2017(2): 1195-1204.
[17] [17] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[18] [18] Laine S, Aila T. Temporal ensembling for semi-supervised learning[J]. arXiv preprint arXiv:1610.02242, 2016.
[19] [19] ZHONG Y, HU X, LUO C, et al. WHU-Hi: UAV-borne hyperspdectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF[J].Remote Sensing of Environment, 2020,250: 112012.
[20] [20] Melgani F, Bruzzone L. Classification of hyperspectral remote sensing images with support vector machines[J].IEEE Transactions on Geoscience and Remote Sensing, 2004,42(8): 1778-1790.
[21] [21] Paoletti M E, Haut J M, Fernandez-Beltran R, et al. Deep pyramidal residual networks for spectral–spatial hyperspectral image classification[J].IEEE Transactions on Geoscience and Remote Sensing, 2018,57(2): 740-754.
Get Citation
Copy Citation Text
GUO Xuchen, FAN Yugang, JIANG Mingkai. Self-Ensembling Network Model and Its Hyperspectral Object Recognition Under Regularization Constraint[J]. Infrared Technology, 2025, 47(7): 823