Acta Optica Sinica, Volume. 43, Issue 21, 2114002(2023)

Reinforcement Learning for Free Electron Laser Online Optimization

Jiacheng Wu1,2, Meng Cai3, Yujie Lu1,3, Nanshun Huang4、*, Chao Feng2,3, and Zhentang Zhao1,2,3
Author Affiliations
  • 1School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • 2Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
  • 3Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • 4Zhangjiang Laboratory, Shanghai 201210, China
  • show less
    References(21)

    [1] Chapman H N. X-ray free-electron lasers for the structure and dynamics of macromolecules[J]. Annual Review of Biochemistry, 88, 35-58(2019).

    [2] Coffee R N, Cryan J P, Duris J et al. Development of ultrafast capabilities for X-ray free-electron lasers at the linac coherent light source[J]. Philosophical Transactions A, 377, 20180386(2019).

    [3] Marangos J P. The measurement of ultrafast electronic and structural dynamics with X-rays[J]. Philosophical Transactions A, 377, 20170481(2019).

    [4] Liu Z Y, Mu C X, Sun C Y. An overview on algorithms and applications of deep reinforcement learning[J]. Chinese Journal of Intelligent Science and Technology, 2, 314-326(2020).

    [5] Sliver D, Lever G, Heess N et al. Deterministic policy gradient algorithms[C], 387-395(2014).

    [7] Yang S M, Shan Z, Ding Y et al. Survey of research on deep reinforcement learning[J]. Computer Engineering, 47, 19-29(2021).

    [13] Edelen A L, Milton S V, Biedron S G et al. Using a neural network control policy for rapid switching between beam parameters in an fel[R](2017).

    [14] Bruchon N, Fenu G. Free-electron laser optimization with reinforcement learning[C], 1122-1126(2020).

    [15] Ramirez L V, Mertens T, Mueller R et al. Adding machine learning to the analysis and optimization toolsets at the light source BESSY II[C], 5-11(2019).

    [16] O’Shea F, Bruchon N, Gaio G. Policy gradient methods for free-electron laser and terahertz source optimization and stabilization at the FERMI free-electron laser at Elettra[J]. Physical Review Accelerators and Beams, 23, 122802(2020).

    [17] Kain V, Hirlander S, Goddard B et al. Sample-efficient reinforcement learning for CERN accelerator control[J]. Physical Review Accelerators and Beams, 23, 124801(2020).

    [19] Feng C, Deng H X. Review of fully coherent free-electron lasers[J]. Nuclear Science and Techniques, 29, 160(2018).

    [20] Zhou K S. Physical study of ultra-high brightness X-ray free electron laser[D](2018).

    [21] Reiche S. GENESIS 1.3: a fully 3D time-dependent FEL simulation code[J]. Nuclear Instruments and Methods in Physics Research Section A, 429, 243-248(1999).

    Tools

    Get Citation

    Copy Citation Text

    Jiacheng Wu, Meng Cai, Yujie Lu, Nanshun Huang, Chao Feng, Zhentang Zhao. Reinforcement Learning for Free Electron Laser Online Optimization[J]. Acta Optica Sinica, 2023, 43(21): 2114002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Apr. 28, 2023

    Accepted: May. 31, 2023

    Published Online: Nov. 16, 2023

    The Author Email: Huang Nanshun (huangns@zjlab.ac.cn)

    DOI:10.3788/AOS230893

    Topics