Journal of Semiconductors, Volume. 42, Issue 4, 041303(2021)
Hybrid material integration in silicon photonic integrated circuits
[1] C R Doerr. Silicon photonic integration in telecommunications. Front Phys, 3, 37(2015).
[2] W Q Xie, T Komljenovic, J X Huang et al. Heterogeneous silicon photonics sensing for autonomous cars. Opt Express, 27, 3642(2019).
[3] D Marpaung, J P Yao, J Capmany. Integrated microwave photonics. Nat Photonics, 13, 80(2019).
[4] A W Elshaari, W Pernice, K Srinivasan et al. Hybrid integrated quantum photonic circuits. Nat Photonics, 14, 285(2020).
[5] L Liu, J van Campenhout, G Roelkens et al. Carrier-injection-based electro-optic modulator on silicon-on-insulator with a heterogeneously integrated III-V microdisk cavity. Opt Lett, 33, 2518(2008).
[6] G T Reed, D J Thomson, F Y Gardes et al. High-speed carrier-depletion silicon Mach-Zehnder optical modulators with lateral PN junctions. Front Phys, 2, 77(2014).
[7] K Debnath, D J Thomson, W W Zhang et al. All-silicon carrier accumulation modulator based on a lateral metal-oxide-semiconductor capacitor. Photonics Res, 6, 149(2018).
[8] C Wang, M Zhang, X Chen et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101(2018).
[9] F Eltes, C Mai, D Caimi et al. A BaTiO3-based electro-optic pockels modulator monolithically integrated on an advanced silicon photonics platform. J Light Technol, 37, 1456(2019).
[10] X L Wang, C Y Lin, S Chakravarty et al. Effective in-device
[11] A Yariv, X K Sun. Supermode Si/III-V hybrid lasers, optical amplifiers and modulators: A proposal and analysis. Opt Express, 15, 9147(2007).
[12] S Tanaka, S H Jeong, S Sekiguchi et al. High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology. Opt Express, 20, 28057(2012).
[13] Q Li, K M Lau. Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics. Prog Cryst Growth Charact Mater, 63, 105(2017).
[14] G Roelkens, A Abassi, P Cardile et al. III-V-on-silicon photonic devices for optical communication and sensing. IEEE Photonics J, 3, 969(2015).
[15] G Roelkens, D van Thourhout, R Baets et al. Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a silicon-on-insulator waveguide circuit. Opt Express, 14, 8154(2006).
[16] T Tatsumi, K Tanabe, K Watanabe et al. 1.3 μm InAs/GaAs quantum dot lasers on Si substrates by low-resistivity, Au-free metal-mediated wafer bonding. J Appl Phys, 112, 033107(2012).
[17] T Hong, G Z Ran, T Chen et al. A selective-area metal bonding InGaAsP–Si laser. IEEE Photonics Technol Lett, 22, 1141(2010).
[18] D Liang, J E Bowers. Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate. J Vac Sci Technol B, 26, 1560(2008).
[19] J Zhang, G Muliuk, J Juvert et al. III-V-on-Si photonic integrated circuits realized using micro-transfer-printing. APL Photonics, 4, 110803(2019).
[20] C O de Beeck, B Haq, L Elsinger et al. Heterogeneous III-V on silicon nitride amplifiers and lasers via microtransfer printing. Optica, 7, 386(2020).
[21] H Park, A Fang, S Kodama et al. Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells. Opt Express, 13, 9460(2005).
[22] G Kurczveil, P Pintus, M J R Heck et al. Characterization of insertion loss and back reflection in passive hybrid silicon tapers. IEEE Photonics J, 5, 6600410(2013).
[23] M A Meitl, Z T Zhu, V Kumar et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat Mater, 5, 33(2006).
[24] X X Wang, P O Weigel, J Zhao et al. Achieving beyond-100-GHz large-signal modulation bandwidth in hybrid silicon photonics Mach Zehnder modulators using thin film lithium niobate. APL Photonics, 4, 096101(2019).
[25] Y Tang, J D Peters, J E Bowers. Over 67 GHz bandwidth hybrid silicon electroabsorption modulator with asymmetric segmented electrode for 1.3 μm transmission. Opt Express, 20, 11529(2012).
[26] E Menard, K J Lee, D Y Khang et al. A printable form of silicon for high performance thin film transistors on plastic substrates. Appl Phys Lett, 84, 5398(2004).
[27] R Safian, M Teng, L M Zhuang et al. Foundry-compatible thin film lithium niobate modulator with RF electrodes buried inside the silicon oxide layer of the SOI wafer. Opt Express, 28, 25843(2020).
[28] M Ayata, Y Fedoryshyn, W Heni et al. High-speed plasmonic modulator in a single metal layer. Science, 358, 630(2017).
[29] M Thomaschewski, V A Zenin, C Wolff et al. Plasmonic monolithic lithium niobate directional coupler switches. Nat Commun, 11, 1(2020).
Get Citation
Copy Citation Text
Swapnajit Chakravarty, Min Teng, Reza Safian, Leimeng Zhuang. Hybrid material integration in silicon photonic integrated circuits[J]. Journal of Semiconductors, 2021, 42(4): 041303
Category: Reviews
Received: Oct. 26, 2020
Accepted: --
Published Online: Jun. 17, 2021
The Author Email: