Journal of Optoelectronics · Laser, Volume. 34, Issue 12, 1279(2023)
Descalloping of GF-3 ScanSAR image based on self-attention mechanism and CycleGAN
[2] [2] LIU J Y,QIU X L,HAN B,et al.Study on geo-location of sliding spotlight mode of GF-3 satellite[C]//5th IEEE Asia-Pacific Conference on Synthetic Aperture Radar,September 1-4,2015,Singapore.New York:IEEE,2015:417-420.
[3] [3] GUO Y J,CHEN E,GUO Y,et al.Deep highway unit network for land cover type classification with GF-3 SAR imagery[C]//2017 SAR in Big Data Era:Models,Methods and Applications (BIGSARDATA),November 13-14,2017,Beijing,China.New York:IEEE,2017:1-6.
[6] [6] SCHIAVULLI D,SORRENTINO A,MIGLIACCIO M.An innovative technique for postprocessing descalloping[J].IEEE Geoscience and Remote Sensing Letters,2013,10(3):424-427.
[7] [7] HAWKINS R K,VACHON P W.Modelling SAR scalloping in burst mode products from RADARSAT-1 and Envisat[C]//SAR Workshop on Calibration/Validation,September 24-26,2002,London,United Kingdom.Noordwijk,The Netherlands:ESA Publications Division,2003.
[8] [8] BAMLER R.Optimum look weighting for burst-mode and ScanSAR processing[J].IEEE Transactions on Geoscience and Remote Sensing,1995,33(3):718-725.
[9] [9] VIGNERON C M.Radiometric image quality improvement of Scansar data[D].Ottawa:Carleton University,1994:52-58.
[10] [10] SHIMADA M.Long-term stability of L-band normalized radar cross section of Amazon rainforest using the JERS-1 SAR[J].Canadian Journal of Remote Sensing,2005,31(1):132-137.
[11] [11] ROMEISER R,HORSTMANN J,GRABER H.A new scalloping filter algorithm for ScanSAR images[C]//2010 IEEE International Geoscience and Remote Sensing Symposium,July 25-30,2010,Honolulu,HI,USA.New York:IEEE,2010:4079-4082.
[12] [12] IQBAL M,CHEN J,YANG W,et al.Kalman filter for removal of scalloping and inter-scan banding in ScanSAR images[J].Progress in Electromagnetics Research,2012,132:443-461.
[13] [13] SORRENTINO A,SCHIAVULLI D,MIGLIACCIO M.A post-processing technique for scalloping suppression over ScanSAR images[C]//2012 6th European Conferece on Antennas and Propagation,March 26-30,2012,Prague,Czech.New York:IEEE,2012:2078-2081.
[14] [14] LANDMARK K,SOLBERG A H S.Reducing scalloping in synthetic aperture radar images using a composite image transform[C]//2015 Image and Signal Processing for Remote Sensing XXI,September 14-23,2015,Toulouse,France.Bellingham,Washington,USA:SPIE,2015,9643:96431B.
[16] [16] RADFORD A,METZ L,CHINTALA S.Unsupervised representation learning with deep convolutional generative adversarial networks[C]//2015 International Conference on Learning Representations,May 7-9,2015,San Diego,USA.Washington,DC:ICLR,2015:1-15.
[17] [17] ARJOVSKY M,CHINTALA S,BOTTOU L.Wasserstein GAN[EB/OL].(2017-12-06)[2022-02-13].https://arxiv.org/pdf/1701.07875v2.pdf.
[18] [18] ZHU J Y,PARK T,ISOLA P,et al.Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//2017 IEEE International Conference on Computer Vision,July 10-13,2017,Venice,Italy.New York:IEEE,2017:2242-2251.
[19] [19] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//31st International Conference on Neural Information Processing Systems,December 4-10,2017,Long Beach,CA,USA.New York:ACM,2017:6000-6010.
[20] [20] YI Z L,ZHANG H,TAN P,et al.DualGAN:unsupervised dual learning for image-to-image translation[C]//2017 The IEEE International Conference on Computer Vision,July 10-13,2017,Venice,Italy.New York:IEEE,2017:28-49.
[21] [21] ISOLA P,ZHU J Y,ZHOU T,et al.Image-to-image translation with conditional adversarial networks[C]//2017 IEEE Conference on Computer Vision & Pattern Recognition,July 21-26,2017,Honolulu,HI,USA.New York:IEEE,2017:5967-5976.
[22] [22] YANG H,SUN J,CARASS A,et al.Unpaired brain MR-to-CT synthesis using a structure cons trained CycleGAN[C]//2018 International Workshop on Deep Learning in Medical Image Analysis,August 26-30,2018,Granada,Spain.Berlin:Springer,2018:1-8.
[23] [23] ALMAHARIRI A,RAJESWAR S,SORDONI A,et al.Augmented CycleGAN:learning many-to-many mappings from unpaired data[C]//2018 International Conference on Machine Learning,July 10-15,2018,Stockholm,Sweden.New York:PMLR,2018:195-204.
[24] [24] KANEKO T,KAMEOKA H.Parallel-data-free voice conversion using cycle-consistent adversarial networks[EB/OL].(2017-12-20) [2022-02-13].https://arxiv.org/pdf/1711.11293.pdf.
[25] [25] CHENG J,DONG L,LAPATA M.Long short-term memory -networks for machine reading[C]//2016 Conference on Empirical Methods in Natural Language Processing,November 1-5,2016,Austin,USA.Stroudsburg:ACL,2016:551-561.
[26] [26] PARIKH A P,TCKSTRM O,DAS D.A decomposable attention model for natural language inference[C]//2016 Conference on Empirical Methods in Natural Language Processing,November 1-5,2016,Austin,USA.Stroudsburg:ACL,2016:2249-2255.
Get Citation
Copy Citation Text
SUN Zengguo, PENG Xuejun, LIU Huixia, CHEN Weirong, WANG Xinpeng. Descalloping of GF-3 ScanSAR image based on self-attention mechanism and CycleGAN[J]. Journal of Optoelectronics · Laser, 2023, 34(12): 1279
Received: Feb. 13, 2022
Accepted: --
Published Online: Sep. 25, 2024
The Author Email: LIU Huixia (liuhx@ntu.edu.cn)