Laser Technology, Volume. 49, Issue 2, 250(2025)

Advances in 4-D and 5-D photoacoustic imaging techniques

AI Jingsai1, SUN Zheng1,2、*, and LI Lu1
Author Affiliations
  • 1Department of Electronic and Communication Engineering, North China Electirc Power University, Baoding 071003, China
  • 2Hebei Key Laboratory of Power Internet of Things Technology, North China Electirc Power University, Baoding 071003, China
  • show less
    References(56)

    [1] [1] WU D, TAO Ch, LIU X J,et al. Photoacoustic tomography reconstruction in a 2-D chaotic cavity using time reversal[J]. International Journal of Thermophysics, 2013, 34(8/9): 1646-1651.

    [2] [2] ERMILOV S A, KHAMAPIRAD T, ANDRE C,et al. Laser optoacoustic imaging system for detection of breast cancer[J]. Journal of Biomedical Optics, 2009, 14(2): 024007.

    [3] [3] YIN B Zh, XING D, WANG Y,et al. Fast photoacoustic imaging system based on 320-element linear transducer array[J]. Physics in Medicine and Biology, 2004, 49(7): 1339-1346.

    [4] [4] JEROME G, ARAQUE C M A, ALEXANDER D,et al. Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: Whole-body tomographic system for small animals[J]. Medical Physics, 2013, 40(1): 013302.

    [5] [5] HANS-PETER B, RICHARD S, MATTHEW F,et al. Whole-body three-dimensional optoacoustic tomography system for small animals[J]. Journal of Biomedical Optics, 2009, 14(6): 064007.

    [6] [6] LAN H R, JIANG D H, GAO F,et al. Deep learning enabled real-time photoacoustic tomography system via single data acquisition channel[J]. Photoacoustics, 2021, 22: 100270.

    [7] [7] XIANG L Zh, WANG B, JI L J,et al. 4-D photoacoustic tomography[J]. Scientific Reports, 2013, 3(1): 1113.

    [8] [8] JIANG D, XU Y, LAN H,et al. Size-adjustable ring-shape photoacoustic tomography imager in vivo[J]. Journal of Biophotonics, 2022, 15(7): e202200070.

    [9] [9] YANG J, CHOI S, KIM C. Practical review on photoacoustic computed tomography using curved ultrasound array transducer[J]. Biomedical Engineering Letters, 2021, 12(1): 1-17.

    [10] [10] SUN Y, WANG Y B, LI W Zh,et al. Real-time dual-modal photoacoustic and fluorescence small animal imaging[J]. Photoacoustics, 2024, 36: 100593.

    [11] [11] CHO S, KIM M, AHN J,et al. An ultrasensitive and broadband transparent ultrasound transducer for ultrasound and photoacoustic imaging in-vivo[J]. Nature Communications, 2024, 15(1): 1444.

    [12] [12] DEN-BEN X L, JAMES F S, DANIEL R. High-frame rate four dimensional optoacoustic tomography enables visualization of cardiovascular dynamics and mouse heart perfusion[J]. Scientific Reports, 2015, 5(1): 10133.

    [13] [13] DEN-BEN X L, RAZANSKY D. Portable spherical array probe for volumetric real-time optoacoustic imaging at centimeter-scale depths[J]. Optics Express, 2013, 21(23): 28062-28071.

    [14] [14] AMY L H, DEN-BEN X L, IVANA I,et al. Characterization of cardiac dynamics in an acute myocardial infarction model by four-dimensional optoacoustic and magnetic resonance imaging[J]. Theranostics, 2017, 7(18): 4470-4479.

    [15] [15] MITRADEEP S, MAILYN P, GILLES R,et al. Motion rejection and spectral unmixing for accurate estimation of in vivo oxygen saturation using multispectral optoacoustic tomography[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2023, 70(12): 1671-1681.

    [17] [17] JEON S, PARK E Y, CHOI W,et al. Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging of humans[J]. Photoacoustics, 2019, 15: 100136.

    [18] [18] DEN-BEN X L, BAY E, RAZANSKY D. Functional optoacoustic imaging of moving objects using microsecond-delay acquisition of multispectral three-dimensional tomographic data[J]. Scientific Reports, 2014, 4(1): 5878.

    [19] [19] NEUSCHMELTING V, BURTON N C, LOCKAU H,et al. Performance of a multispectral optoacoustic tomography (MSOT) system equipped with 2D vs. 3D handheld probes for potential clinical translation[J]. Photoacoustics, 2016, 4(1): 1-10.

    [20] [20] JIAN X H, DONG F L, XU J,et al. Frequency domain analysis of multiwavelength photoacoustic signals for differentiating tissue components[J]. International Journal of Thermophysics, 2018, 39(5): 1-9.

    [21] [21] CHUAH S Y, ATTIA A B E, HO C J H,et al. Volumetric multispectral optoacoustic tomography for 3-dimensional reconstruction of skin tumors: A further evaluation with histopathologic correlation[J]. The Journal of Investigative Dermatology, 2019, 139(2): 481-485.

    [22] [22] REGENSBURGER A P, WAGNER A L, DANKO V,et al. Multispectral optoacoustic tomography for non-invasive disease phenotyping in pediatric spinal muscular atrophy patients[J]. Photoacoustics, 2022, 25: 100315.

    [23] [23] LISANNE G, EPAMEINONDAS G, CARLOTTA B,et al. Preoperative mapping of lymphatic vessels by multispectral optoacoustic tomography[J]. Lymphatic Research and Biology, 2022, 20(6): 659-664.

    [24] [24] HUANG N, HE M, SHI H Sh,et al. Curved-array-based multispectral photoacoustic imaging of human finger joints[J]. IEEE Transactions on Biomedical Engineering, 2018, 65(7): 1452-1459.

    [25] [25] KUMAR M D, CHRISTOS M, MICHAEL M,et al. High-pulse energy supercontinuum laser for high-resolution spectroscopic photoacoustic imaging of lipids in the 1650-1850 nm region[J]. Biomedical Optics Express, 2018, 9(4): 1762-1770.

    [26] [26] TAKASHI B, CONLEY N C, CHOI S W. Multispectral photoacoustic microscopy of lipids using a pulsed supercontinuum laser[J]. Biomedical Optics Express, 2018, 9(1): 276-288.

    [27] [27] SEONYEONG P, BROOKS F J, UMBERTO V,et al. Normalization of optical fluence distribution for three-dimensional functional optoacoustic tomography of the breast[J]. Journal of Biomedical Optics, 2022, 27(3): 036001.

    [28] [28] CHRISTOPH D, IVAN O, BASAK K C,et al. Deep-learning-based electrical noise removal enables high spectral optoacoustic contrast in deep tissue[J]. IEEE Transactions on Medical Imaging, 2022, 41(11): 3182-3193.

    [29] [29] O’KELLY D, GUO Y H, MASON R P. Evaluating online filtering algorithms to enhance dynamic multispectral optoacoustic tomography[J]. Photoacoustics, 2020, 19: 100184.

    [30] [30] JIAN H X, DONG L F, XU J,et al. Frequency domain analysis of multiwavelength photoacoustic signals for differentiating tissue components[J]. International Journal of Thermophysics, 2018, 39(5): 1-9.

    [31] [31] FADHEL N M, HYSI E, ASSI H,et al. Fluence-matching technique using photoacoustic radiofrequency spectra for improving estimates of oxygen saturation[J]. Photoacoustics, 2020, 19: 100182.

    [32] [32] ANIWAT J, BO L, LIU Y F,et al. Recurrent and convolution neural networks for sequential multispectral optoacoustic tomography (MSOT) imaging[J]. Journal of Biophotonics, 2023, 16(11): e202300142.

    [33] [33] JNAWALI K, CHINNI B, DOGRA V,et al. Deep 3D convolutional neural network for automatic cancer tissue detection using multispectral photoacoustic imaging[J]. Proceedings of the SPIE, 2019, 10955: 109551D.

    [34] [34] EGHBAL A, ATAHAR M, SREYANKAR N,et al. Classification of human ovarian cancer using functional, spectral, and imaging features obtained from in vivo photoacoustic imaging[J]. Biomedical Optics Express, 2019, 10(5): 2303-2317.

    [35] [35] THOMAS K, MARTIN F. Multiple illumination learned spectral decoloring for quantitative optoacoustic oximetry imaging[J]. Journal of Biomedical Optics, 2021, 26(8): 085001.

    [36] [36] MA X, CAO M, SHEN Q H,et al. Adipocyte size evaluation based on photoacoustic spectral analysis combined with deep learning method[J]. Applied Sciences, 2018, 8(11): 2178.

    [37] [37] YOON H, LUKE P G, EMELIANNOV Y S. Impact of depth-dependent optical attenuation on wavelength selection for spectroscopic photoacoustic imaging[J]. Photoacoustics, 2018, 12: 46-54.

    [38] [38] EUNWOO P, LEE Y J, LEE C,et al. Effective photoacoustic absorption spectrum for collagen-based tissue imaging[J]. Journal of Biomedical Optics, 2020, 25(5): 1-8.

    [39] [39] HIRASAWA T, IWATATE R J, KAMIYA M,et al. Multispectral photoacoustic imaging of tumours in mice injected with an enzyme-activatable photoacoustic probe[J]. Journal of Optics, 2017, 19(1): 014002.

    [40] [40] JRGEN G, DELIOLANIS N C, ANDREAS B,et al. Blind source unmixing in multi-spectral optoacoustic tomography[J]. Optics Express, 2011, 19(4): 3175-3184.

    [41] [41] GRASSO V, HASSAN H W, MIRTAHERI P,et al. Recent advances in photoacoustic blind source spectral unmixing approaches and the enhanced detection of endogenous tissue chromophores[J]. Frontiers in Signal Processing, 2022, 2: 984901.

    [42] [42] ARABUL M U, RUTTEN M C M, BRUNEVAL P,et al. Unmixing multi-spectral photoacoustic sources in human carotid plaques using non-negative independent component analysis[J]. Photoacoustics, 2019, 15: 100140.

    [43] [43] DING L, DEN-BEN X L, LUTZWEILER C,et al. Efficient non-negative constrained model-based inversion in optoacoustic tomography[J]. Physics in Medicine and Biology, 2015, 60(17): 6733-6750.

    [44] [44] DING L, DEN-BEN X L, BURTON N C,et al. Constrained inversion and spectral unmixing in multispectral optoacoustic tomography[J]. IEEE Transactions on Medical Imaging, 2017, 36(8): 1676-1685.

    [45] [45] DEN-BEN X L, DELIOLANIS C N, NTZIACHRISTOS V,et al. Fast unmixing of multispectral optoacoustic data with vertex component analysis[J]. Optics and Lasers in Engineering, 2014, 58: 119-125.

    [46] [46] GRASSO V, HOLTHOF J, JOSE J. An automatic unmixing approach to detect tissue chromophores from multispectral photoacoustic imaging[J]. Sensors, 2020, 20(11): 3235.

    [47] [47] GRASSO V, REGINE W, JITHIN J. Superpixel spectral unmixing framework for the volumetric assessment of tissue chromophores: A photoacoustic data-driven approach[J]. Photoacoustics, 2022, 26: 100367.

    [48] [48] DURAIRAJ D A, AGRAWAL S, JOHNSTONBAUGH K,et al. Unsupervised deep learning approach for photoacoustic spectral unmixing[J]. Proceedings of the SPIE, 2020, 11240: 112403H.

    [49] [49] CAMILO C, CATARINA M, AMIR G,et al. Blind spectral unmixing for characterization of plaque composition based on multispectral photoacoustic imaging[J]. Scientific Reports, 2023, 13(1): 4119.

    [50] [50] CAMILO C, NASTARAN R M, AMIR G,et al. Deep learning assisted classification of spectral photoacoustic imaging of carotid plaques[J]. Photoacoustics, 2023, 33: 100544.

    [51] [51] DEN-BEN X L, RAZANSKY D. Adding fifth dimension to optoacoustic imaging: Volumetric time-resolved spectrally enriched tomography[J]. Light: Science & Applications, 2014, 3(1): e137.

    [52] [52] MORSCHER S, DRIESSEN H P W, CLAUSSEN J,et al. Semi-quantitative multispectral optoacoustic tomography (MSOT) for volumetric PK imaging of gastric emptying[J]. Photoacoustics, 2014, 2(3): 103-110.

    [53] [53] HERZOG E, TARUTTIS A, BEZIERE N,et al. Optical imaging of cancer heterogeneity with multispectral optoacoustic tomography[J]. Radiology, 2012, 263(2): 461-468.

    [54] [54] GOTTSCHALK S, FEHM T F, DEN-BEN X L,et al. Noninvasive real-time visualization of multiple cerebral hemodynamic parameters in whole mouse brains using five-dimensional optoacoustic tomography[J]. Journal of Cerebral Blood Flow & Metabolism, 2015, 35(4): 531-535.

    [55] [55] REBER J, WILLERSHUSER M, KARLAS A,et al. Non-invasive measurement of brown fat metabolism based on optoacoustic imaging of hemoglobin gradients[J]. Cell Metabolism, 2018, 27(3): 689-701.

    [56] [56] AGRAWAL S, FADDEN C, DANGI A,et al. Light-emitting-diode-based multispectral photoacoustic computed tomography system[J]. Sensors, 2019, 19(22): 4861.

    [57] [57] NEDA D, BERKAN L, ZBEK A,et al. Deep learning of image- and time-domain data enhances the visibility of structures in optoacoustic tomography[J]. Optics Letters, 2021, 46(13): 3029-3032.

    Tools

    Get Citation

    Copy Citation Text

    AI Jingsai, SUN Zheng, LI Lu. Advances in 4-D and 5-D photoacoustic imaging techniques[J]. Laser Technology, 2025, 49(2): 250

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 14, 2024

    Accepted: May. 13, 2025

    Published Online: May. 13, 2025

    The Author Email: SUN Zheng (sunzheng_tju@163.com)

    DOI:10.7510/jgjs.issn.1001-3806.2025.02.015

    Topics