Journal of Inorganic Materials, Volume. 39, Issue 10, 1107(2024)

Preparation and Properties of BaSrGa4O8: Tb3+ Mechanoluminescent Materials

Rui SHI1,2, Wei LIU1,2,3, Lin LI1,2, Huan LI1,2, Zhijun ZHANG1,2, Guanghui RAO1,2、*, and Jingtai ZHAO1,2、*
Author Affiliations
  • 11. School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
  • 22. Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China
  • 33. School of Mechanical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
  • show less
    References(22)

    [1] SHAO P S, XIONG P X, JIANG D L et al. Tunable and enhanced mechanoluminescence in LiYGeO4: Tb3+via Bi3+→Tb3+ energy transfer[J]. Journal of Materials Chemistry C, 11, 2120(2023).

    [2] HU T, GAO Y, WANG B et al. A new class of battery-free, mechanically powered, piezoelectric Ca5Ga6O14: Tb3+ phosphors with self-recoverable luminescence[J]. Journal of Materials Chemistry C, 10(2022).

    [3] LIU S Q, ZHENG Y T, PENG D F et al. Near-infrared mechanoluminescence of Cr3+ doped gallate spinel and magnetoplumbite smart materials[J]. Advanced Functional Materials, 33(2023).

    [4] QASEM A, XIONG P P, MA Z J et al. Recent advances in mechanoluminescence of doped zinc sulfides[J]. Laser & Photonics Reviews, 15(2021).

    [5] XIONG P X, HUANG B L, PENG D F et al. Self-recoverable mechanically induced instant luminescence from Cr3+-doped LiGa5O8[J]. Advanced Functional Materials, 31(2021).

    [6] FREUND F T. Rocks that crackle and sparkle and glow: strange pre-earthquake phenomena[J]. Journal of Scientific Exploration, 17(2003).

    [7] SONG H, TIMILSINA S, JUNG J Y et al. Improving the sensitivity of the mechanoluminescence composite through functionalization for structural health monitoring[J]. ACS Applied Materials & Interfaces, 14(2022).

    [8] TERASAKI N, XU C N. Historical-log recording system for crack opening and growth based on mechanoluminescent flexible sensor[J]. IEEE Sensors Journal, 13(2013).

    [9] JIA Y, YEI M, JIA W Y. Stress-induced mechanoluminescence in SrAl2O4: Eu2+, Dy3+[J]. Optical Materials, 28(2006).

    [10] JEONG S M, SONG S, JOO K I et al. Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer[J]. Energy & Environmental Science, 7(2014).

    [11] SONG Y D, XIAO J Q, ZHAO L et al. Multi-mode mechanoluminescence of fluoride glass ceramics from rigid to flexible media toward multi-scene mechanical sensors[J]. Journal of Materials Chemistry A, 12(2024).

    [12] CHANDRA B P, RATHORE A S. Classification of mechanoluminescence[J]. Crystal Research and Technology, 30(1995).

    [13] BÜNZLI J C G, WONG K L. Lanthanide mechanoluminescence[J]. Journal of Rare Earths, 36(2018).

    [14] CAO J L, DING S S, ZHOU Y P et al. Unveiling the potential of sunlight-driven multifunctional blue long persistent luminescent materials via cutting-edge trap modulation strategies[J]. Advanced Optical Materials, 12, 2302011(2024).

    [15] WU S, XIONG P X, JIANG D L et al. Single Tb3+ ion doped ratiometric mechanoluminescence for tunable stress visualization[J]. Chemical Engineering Journal, 469, 143961(2023).

    [16] XIAO Y, XIONG P X, ZHANG S et al. Deep-red to NIR mechanoluminescence in centrosymmetric perovskite MgGeO3: Mn2+ for potential dynamic signature anti-counterfeiting[J]. Chemical Engineering Journal, 453, 139671(2023).

    [17] XIAO Y, XIONG P X, LE Y K et al. Defect-management-induced multi-stimulus-responsive mechanoluminescence in Mn2+ doped gallate compound[J]. Nano Energy, 120, 109086(2024).

    [18] BAI Y Q, GUO X P, TIAN B R et al. Self-charging persistent mechanoluminescence with mechanics storage and visualization activities[J]. Advanced Science, 9(2022).

    [19] SHAO P S, XIONG P X, XIAO Y et al. Self-recoverable NIR mechanoluminescence from Cr3+ doped perovskite type aluminate[J]. Advanced Powder Materials, 3(2024).

    [20] QIU X Y, LIU J Z, ZHOU B et al. Bioinspired bimodal mechanosensors with real-time, visualized information display for intelligent control[J]. Advanced Functional Materials, 33(2023).

    [21] HU S H, LONG Z W, WEN Y G et al. An orange-emitting phosphor BaSrGa4O8: Bi3+, K+ with unique one-dimensional chain structure for high index color WLEDs[J]. Journal of the American Ceramic Society, 103(2020).

    Tools

    Get Citation

    Copy Citation Text

    Rui SHI, Wei LIU, Lin LI, Huan LI, Zhijun ZHANG, Guanghui RAO, Jingtai ZHAO. Preparation and Properties of BaSrGa4O8: Tb3+ Mechanoluminescent Materials [J]. Journal of Inorganic Materials, 2024, 39(10): 1107

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 4, 2024

    Accepted: --

    Published Online: Dec. 13, 2024

    The Author Email: Guanghui RAO (rgh@guet.edu.cn), Jingtai ZHAO (jtzhao@guet.edu.cn)

    DOI:10.15541/jim20240095

    Topics