Acta Optica Sinica, Volume. 43, Issue 17, 1700001(2023)
Coherent Beam Combining of Fiber Lasers by Actively Phase Control
[1] Snitzer E. Optical maser action of Nd3+ in a Barium crown glass[J]. Physical Review Letters, 7, 444-446(1961).
[2] Koester C J, Snitzer E. Amplification in a fiber laser[J]. Applied Optics, 3, 1182-1186(1964).
[3] Dominic V, MacCormack S, Waarts R et al. 110 W fibre laser[J]. Electronics Letters, 35, 1158-1160(1999).
[4] Jeong Y, Sahu J K, Payne D N et al. Ytterbium-doped large-core fiber laser with 1 kW continuous-wave output power[C], PDP13(2004).
[6] Zhou P, Leng J Y, Xiao H et al. High average power fiber lasers: research progress and future prospect[J]. Chinese Journal of Lasers, 48, 2000001(2021).
[7] Zhou P, Su R T, Ma Y X et al. Review of coherent laser beam combining research progress in the past decade[J]. Chinese Journal of Lasers, 48, 0401003(2021).
[8] Brignon A[M]. Coherent laser beam combining(2013).
[9] Müller M, Aleshire C, Klenke A et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 45, 3083-3086(2020).
[10] Flores A, Ehrehreich T, Holten R et al. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light[J]. Proceedings of SPIE, 9728, 97281Y(2016).
[11] Wu J, Ma Y X, Ma P F et al. Coherent synthesis of 20 kW high power output by fiber laser[J]. Infrared and Laser Engineering, 50, 20210621(2021).
[12] Zhou P[M]. Research on coherent combination technology of fiber laser(2015).
[13] Li C, Tao Y, Jiang M et al. High-power single-frequency fiber amplifiers: progress and challenge[J]. Chinese Optics Letters, 21, 090002(2023).
[14] Lai W C, Ma P F, Xiao H et al. High-power narrow-linewidth fiber laser technology[J]. High Power Laser and Particle Beams, 32, 121001(2020).
[15] Wu H S, Li R X, Xiao H et al. New avenues for high-power high-brightness tandem-pumped fiber lasers[J]. Proceedings of SPIE, 12595, 125952D(2023).
[16] Jauregui C, Stihler C, Limpert J. Transverse mode instability[J]. Advances in Optics and Photonics, 12, 429-484(2020).
[17] Stihler C, Jauregui C, Kholaif S E et al. Intensity noise as a driver for transverse mode instability in fiber amplifiers[J]. PhotoniX, 1, 1-17(2020).
[18] Agrawal G P[M]. Nonlinear fiber optics(2013).
[19] Zhou P. High average power fiber lasers in the past decade[C](2020).
[20] Tao R M, Wang X L, Zhou P. Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 0903319(2018).
[21] Wu H S, Li H B, An Y et al. Transverse mode instability mitigation in a high-power confined-doped fiber amplifier with good beam quality through seed laser control[J]. High Power Laser Science and Engineering, 10, e44(2022).
[22] Chen X, Yao T F, Huang L J et al. Functional fibers and functional fiber-based components for high-power lasers[J]. Advanced Fiber Materials, 5, 59-106(2023).
[23] Ma X Y, Zhang Y, Ye J et al. Pure silica fiber Raman gain enabled high-power low-quantum defect fiber laser[J]. Optics & Laser Technology, 158, 108833(2023).
[24] Li R X, Wu H S, Xiao H et al. More than 5 kW counter tandem pumped fiber amplifier with near single-mode beam quality[J]. Optics & Laser Technology, 153, 108204(2022).
[25] Huang L, Wu H S, Li R X et al. 414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier[J]. Optics Letters, 42, 1-4(2016).
[26] Lai W C, Ma P F, Liu W et al. 550 W single frequency fiber amplifiers emitting at 1030 nm based on a tapered Yb-doped fiber[J]. Optics Express, 28, 20908-20919(2020).
[27] Ma P F, Song J X, Wang G J et al. High-power narrow linewidth fiber laser breaks through 6 kW near single-mode output[J]. Chinese Journal of Lasers, 49, 0916002(2022).
[28] Ren S, Ma P F, Chen Y S et al. Realization of 5 kW narrow linewidth laser output by domestic polarization maintaining fiber[J]. Infrared and Laser Engineering, 52, 20220900(2023).
[29] Ma P F, Yao T F, Chen Y S et al. New progress of high-power narrow-linewidth fiber lasers[J]. Proceedings of SPIE, 12310, 123100E(2022).
[30] Wang T, Li C, Ren B et al. High-power femtosecond laser generation from an all-fiber linearly polarized chirped pulse amplifier[J]. High Power Laser Science and Engineering, 11, e25(2023).
[31] Ma Y X, Zhou P, Wang X L et al. Coherent beam combination of two thulium-doped fiber laser beams with the multi-dithering technique[J]. Optics & Laser Technology, 43, 721-724(2011).
[32] Ma Y, Zhou P, Zhang K et al. A coherent beam combination system based on double PZT phase modulators[J]. Applied Physics B, 107, 765-769(2012).
[34] Beresnev L A, Weyrauch T, Vorontsov M A et al. Development of adaptive fiber collimators for conformal fiber-based beam projection systems[J]. Proceedings of SPIE, 7090, 709008(2008).
[35] Vorontsov M A, Weyrauch T. High-power lasers for directed-energy applications: comment[J]. Applied Optics, 55, 9950-9953(2016).
[36] Li X Y, Geng C, Zhang X J et al. Coherent beam combining of collimated fiber array based on target-in-the-loop technique[J]. Proceedings of SPIE, 8178, 81780M(2011).
[37] Geng C, Luo W, Tan Y et al. Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control[J]. Optics Express, 21, 25045-25055(2013).
[38] Zhi D, Ma Y X, Ma P F et al. Adaptive fiber optics collimator based on flexible hinges[J]. Applied Optics, 53, 5434-5438(2014).
[39] Zhi D, Ma P F, Ma Y X et al. Novel adaptive fiber-optics collimator for coherent beam combination[J]. Optics Express, 22, 31520-31528(2014).
[40] Zhi D, Ma Y X, Chen Z L et al. Large deflection angle, high-power adaptive fiber optics collimator with preserved near-diffraction-limited beam quality[J]. Optics Letters, 41, 2217-2220(2016).
[41] Ma Y X, Luo G, He S Y et al. Cantilevered adaptive fiber-optics collimator based on piezoelectric bimorph actuators[J]. Applied Optics, 61, 3195-3200(2022).
[42] Goodno G D, Komine H, McNaught S J et al. Coherent combination of high-power, zigzag slab lasers[J]. Optics Letters, 31, 1247-1249(2006).
[43] Fan X Y, Liu J J, Liu J S et al. Experimental investigation of a seven-element hexagonal fiber coherent array[J]. Chinese Optics Letters, 8, 48-51(2010).
[44] Huang Z M, Luo Y Q, Zhang D Y et al. Active phase control in laser coherent combination based on liquid crystal optical modulator[J]. Chinese Journal of Lasers, 37, 1713-1716(2010).
[45] Xiao R, Hou J, Jiang Z F et al. Experimental research of coherent combining of three fiber amplifiers[J]. Acta Physica Sinica, 55, 6464-6469(2006).
[46] Seise E, Klenke A, Breitkopf S et al. 88 W 0.5 mJ femtosecond laser pulses from two coherently combined fiber amplifiers[J]. Optics Letters, 36, 3858-3860(2011).
[47] Bourderionnet J, Bellanger C, Primot J et al. Collective coherent phase combining of 64 fibers[J]. Optics Express, 19, 17053-17058(2011).
[48] Yu C X, Kansky J E, Shaw S E J et al. Coherent beam combining of large number of PM fibres in 2-D fibre array[J]. Electronics Letters, 42, 1024-1025(2006).
[49] Antier M, Bourderionnet J, Larat C et al. kHz closed loop interferometric technique for coherent fiber beam combining[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 182-187(2014).
[50] Vorontsov M A, Lachinova S L, Beresnev L A et al. Obscuration-free pupil-plane phase locking of a coherent array of fiber collimators[J]. Journal of the Optical Society of America A, 27, A106-A121(2010).
[51] Zhou P, Liu Z J, Wang X L et al. Coherent beam combining of fiber amplifiers using stochastic parallel gradient descent algorithm and its application[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 248-256(2009).
[52] Huang Z M, Tang X, Luo Y Q et al. Active phase locking of thirty fiber channels using multilevel phase dithering method[J]. Review of Scientific Instruments, 87, 033109(2016).
[53] Shay T M, Benham V, Baker J T et al. First experimental demonstration of self-synchronous phase locking of an optical array[J]. Optics Express, 14, 12015-12021(2006).
[54] Vorontsov M A, Carhart G W, Ricklin J C. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Optics Letters, 22, 907-909(1997).
[55] Zhou P, Ma Y X, Wang X L et al. Dynamical simulation and control bandwidth analysis on coherent beam combining of fiber amplifiers based on stochastic parallel gradient descent algorithm[J]. Chinese Journal of Lasers, 36, 2972-2977(2009).
[56] Zhou P, Liu Z J, Wang X L et al. Coherent beam combination of two-dimensional high power fiber amplifier array using stochastic parallel gradient descent algorithm[J]. Applied Physics Letters, 94, 231106(2009).
[57] Su R T, Zhou P, Wang X L et al. Phase locking of a coherent array of 32 fiber lasers[J]. High Power Laser and Particle Beams, 26, 110101(2014).
[58] Chang H X, Chang Q, Xi J C et al. First experimental demonstration of coherent beam combining of more than 100 beams[J]. Photonics Research, 8, 1943-1948(2020).
[59] Shay T M. Theory of electronically phased coherent beam combination without a reference beam[J]. Optics Express, 14, 12188-12195(2006).
[60] Ma Y X, Liu Z, Zhou P et al. Coherent beam combination of three fiber amplifiers with multi-dithering technique[J]. Chinese Physics Letters, 26, 044204(2009).
[61] Ma Y X, Zhou P, Wang X L et al. Coherent beam combination with single frequency dithering technique[J]. Optics Letters, 35, 1308-1310(2010).
[62] Ma Y X, Wang X L, Leng J Y et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique[J]. Optics Letters, 36, 951-953(2011).
[63] Ma Y X, Zhou P, Wang X L et al. Active phase locking of fiber amplifiers using sine-cosine single-frequency dithering technique[J]. Applied Optics, 50, 3330-3336(2011).
[64] Su R T, Zhang Z X, Zhou P et al. Coherent beam combining of a fiber lasers array based on cascaded phase control[J]. IEEE Photonics Technology Letters, 28, 2585-2588(2016).
[65] Fsaifes I, Daniault L, Bellanger S et al. Coherent beam combining of 61 femtosecond fiber amplifiers[J]. Optics Express, 28, 20152-20161(2020).
[66] Chang Q, Hou T Y, Chang H X et al. Iteration-free, simultaneous correction of piston and tilt distortions in large-scale coherent beam combination systems[J]. Optics Express, 29, 34863-34879(2021).
[67] Chang Q, Hou T Y, Long J H et al. Experimental phase stabilization of a 397-channel laser beam array via image processing in dynamic noise environment[J]. Journal of Lightwave Technology, 40, 6542-6547(2022).
[68] Chang Q, Gao Z Q, Deng Y et al. Coherent synthesis of fiber laser breaks through thousands of paths under strong noise[J]. Chinese Journal of Lasers, 50, 0616001(2023).
[69] Tünnermann H, Shirakawa A. Deep reinforcement learning for coherent beam combining applications[J]. Optics Express, 27, 24223-24230(2019).
[70] Du Q, Wang D, Zhou T et al. 81-beam coherent combination using a programmable array generator[J]. Optics Express, 29, 5407-5418(2021).
[71] Jia H L, Zuo J, Bao Q L et al. A phase-error prediction method for coherent beam combining via convolutional neural network[J]. Optik, 246, 167827(2021).
[72] Liu R Q, Peng C, Liang X Y et al. Coherent beam combination far-field measuring method based on amplitude modulation and deep learning[J]. Chinese Optics Letters, 18, 041402(2020).
[73] Shpakovych M, Maulion G, Kermene V et al. Experimental phase control of a 100 laser beam array with quasi-reinforcement learning of a neural network in an error reduction loop[J]. Optics Express, 29, 12307-12318(2021).
[74] Gao Z Q, Chang Q, Liu H Y et al. Research progress and development trend of machine learning in phase control of fiber laser arrays[J]. Chinese Journal of Lasers, 50, 1101010(2023).
[75] Jiang M, Wu H S, An Y et al. Fiber laser development enabled by machine learning: review and prospect[J]. PhotoniX, 3, 1-27(2022).
[76] Hou T Y, An Y, Chang Q et al. Deep-learning-based phase control method for tiled aperture coherent beam combining systems[J]. High Power Laser Science and Engineering, 7, e59(2019).
[77] Hou T Y, An Y, Chang Q et al. Deep-learning-assisted, two-stage phase control method for high-power mode-programmable orbital angular momentum beam generation[J]. Photonics Research, 8, 715-722(2020).
[78] Chang Q, An Y, Hou T Y et al. Phase-locking system in fiber laser array through deep learning with diffusers[C], M4A.96(2020).
[79] Hou T Y, An Y, Chang Q et al. Deep-learning-based coherent fiber laser array system for power scaling and spatial light structuring[J]. Proceedings of SPIE, 11981, 119810F(2022).
[80] Goodno G D, Shih C C, Rothenberg J E. Perturbative analysis of coherent combining efficiency with mismatched lasers[J]. Optics Express, 18, 25403-25414(2010).
[81] Yu H L, Ma P F, Wang X L et al. Influence of temporal-spectral effects on ultrafast fiber coherent polarization beam combining system[J]. Laser Physics Letters, 12, 105301(2015).
[82] Su R T, Zhou P, Wang X L et al. Active coherent beam combination of two high-power single-frequency nanosecond fiber amplifiers[J]. Optics Letters, 37, 497-499(2012).
[83] Su R T, Zhou P, Wang X L et al. Active coherent beam combining of a five-element, 800 W nanosecond fiber amplifier array[J]. Optics Letters, 37, 3978-3980(2012).
[84] Yu C X, Augst S J, Redmond S M et al. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Optics Letters, 36, 2686-2688(2011).
[85] Yu H L, Zhang Z X, Wang X L et al. High average power coherent femtosecond pulse combining system based on an all fiber active control method[J]. Laser Physics Letters, 15, 075101(2018).
[86] Zhang Z X, Yu H L, Zhi D et al. All fiber optical path difference adaptive control method in femtosecond fiber laser coherent polarization beam combination system[J]. Acta Optica Sinica, 36, 0906003(2016).
[87] Chang H X, Jin K K, Zhang Y Q et al. Research on optical path and phase simultaneous control in coherent beam combining of broadband laser based on spectral filtering[J]. Acta Optica Sinica, 43, 1706003(2023).
[88] Jabczyński J K, Gontar P, Gorajek Ł et al. Simplified sensitivity analysis of coherent beam combining in a tiled aperture architecture[J]. Applied Optics, 60, 5012-5019(2021).
[89] Weyrauch T, Vorontsov M A, Carhart G W et al. Experimental demonstration of coherent beam combining over a 7 km propagation path[J]. Optics Letters, 36, 4455-4457(2011).
[90] Weyrauch T, Vorontsov M, Mangano J et al. Deep turbulence effects mitigation with coherent combining of 21 laser beams over 7 km[J]. Optics Letters, 41, 840-843(2016).
[91] Li F, Zuo J, Huang G et al. Coherent synthesis of target in loop by 19-aperture fiber array laser through 2 km turbulent transmission[J]. Chinese Journal of Lasers, 48, 0316002(2021).
[92] Li F, Zou F, Jiang J L et al. 57-aperture fiber laser phased array adaptive optical system realizes the coherent synthesis of targets transmitted through 2 km atmosphere in the loop[J]. Chinese Journal of Lasers, 49, 0616002(2022).
[93] Wang X, Wang X L, Zhou P et al. 350-W coherent beam combining of fiber amplifiers with tilt-tip and phase-locking control[J]. IEEE Photonics Technology Letters, 24, 1781-1784(2012).
[94] Zhi D, Ma Y X, Ma P F et al. Efficient coherent beam combining of fiber laser array through km-scale turbulent atmosphere[J]. Infrared and Laser Engineering, 48, 1005007(2019).
[95] Ma P F. Study on coherent polarization synthesis system of high power fiber laser[D](2016).
[96] Uberna R, Bratcher A, Tiemann B G. Coherent polarization beam combination[J]. IEEE Journal of Quantum Electronics, 46, 1191-1196(2010).
[97] Liu Z J, Ma P F, Su R T et al. High-power coherent beam polarization combination of fiber lasers: progress and prospect[J]. Journal of the Optical Society of America B, 34, A7-A14(2016).
[98] Uberna R, Bratcher A, Alley T G et al. Coherent combination of high power fiber amplifiers in a two-dimensional re-imaging waveguide[J]. Optics Express, 18, 13547-13553(2010).
[99] Tao R M, Si L, Ma Y X et al. Coherent beam combination of fiber lasers with a strongly confined waveguide: numerical model[J]. Applied Optics, 51, 5826-5833(2012).
[100] Yan Y F, Liu Y, Zhang H Y et al. Principle and numerical demonstration of high power all-fiber coherent beam combination based on self-imaging effect in a square core fiber[J]. Photonics Research, 10, 444-455(2022).
[101] Cheung E C, Ho J G, Goodno G D et al. Diffractive-optics-based beam combination of a phase-locked fiber laser array[J]. Optics Letters, 33, 354-356(2008).
[102] Aleshire C, Steinkopff A, Jauregui C et al. Simplified design of optical elements for filled-aperture coherent beam combination[J]. Optics Express, 28, 21035-21045(2020).
[103] Zhou P, Ma Y X, Wang X L et al. Coherent beam combination of a hexagonal distributed high power fiber amplifier array[J]. Applied Optics, 48, 6537-6540(2009).
[104] Zhang M Q, Zhi D, Ma Y X et al. Coherent fiber-optics-array collimator based on a single unitary collimating lens: proposal design and experimental verification[J]. Applied Optics, 58, 1491-1495(2019).
[105] He S Y, Ma Y X, Luo G et al. A novel fiber collimator with the rod lens for coherent beam combination of fiber laser array[J]. Proceedings of SPIE, 12554, 1255418(2023).
[106] Geng C, Yang Y, Li F et al. Research progress of fiber laser coherent combining[J]. Opto-Electronic Engineering, 45, 170692(2018).
[107] Yang K W, Zhu G S, Hao Q et al. Coherent polarization beam combination by microcontroller-based phase-locking method[J]. IEEE Photonics Technology Letters, 28, 2129-2132(2016).
[108] Ma P F, Zhou P, Ma Y X et al. Coherent polarization beam combining of four high-power fiber amplifiers using single-frequency dithering technique[J]. IEEE Photonics Technology Letters, 24, 1024-1026(2012).
[109] Ma P F, Zhou P, Su R T et al. Coherent polarization beam combining of eight fiber lasers using single-frequency dithering technique[J]. Laser Physics Letters, 9, 456-458(2012).
[110] Ma P F, Zhou P, Xiao H et al. Generation of a 481-W single frequency and linearly polarized beam by coherent polarization locking[J]. IEEE Photonics Technology Letters, 25, 1936-1938(2013).
[111] Liu Z J, Zhou P, Ma P F et al. Coherent polarization combination of four fiber amplifiers with high power and narrow line width to achieve 5 kW high brightness laser output[J]. Chinese Journal of Lasers, 44, 0415004(2017).
[112] Ma P F, Tao R M, Wang X L et al. Coherent polarization beam combination of four mode-locked fiber MOPAs in picosecond regime[J]. Optics Express, 22, 4123-4130(2014).
[113] Shekel E, Vidne Y, Urbach B. 16 kW single mode CW laser with dynamic beam for material processing[J]. Proceedings of SPIE, 11260, 1126021(2020).
[114] Li Y W, Liu Y, Xie L H et al. Realization of high stability near single-mode 10 thousand watt laser output by all-fiber coherent synthesis[J]. Chinese Journal of Lasers, 50, 0316001(2023).
[115] Wang X, Leng J, Zhou P et al. 1.8-kW simultaneous spectral and coherent combining of three-tone nine-channel all-fiber amplifier array[J]. Applied Physics B, 107, 785-790(2012).
[116] Ma P F, Ma Y X, Su R T et al. High-quality and efficient coherent combination of 8 kW fiber laser[J]. Infrared and Laser Engineering, 49, 20190577(2020).
[117] Kabeya D, Kermène V, Fabert M et al. Efficient phase-locking of 37 fiber amplifiers by phase-intensity mapping in an optimization loop[J]. Optics Express, 25, 13816-13821(2017).
[118] Su R T, Xi J C, Chang H X et al. Coherent combing of 60 fiber lasers using stochastic parallel gradient descent algorithm[C], JW2A.1(2019).
[119] Stark H, Buldt J, Müller M et al. 1 kW, 10 mJ, 120 fs coherently combined fiber CPA laser system[J]. Optics Letters, 46, 969-972(2021).
[120] Stark H, Benner M, Buldt J et al. Pulses of 32 mJ and 158 fs at 20-kHz repetition rate from a spatiotemporally combined fiber laser system[J]. Optics Letters, 48, 3007-3010(2023).
[121] Le Dortz J, Heilmann A, Antier M et al. Highly scalable femtosecond coherent beam combining demonstrated with 19 fibers[J]. Optics Letters, 42, 1887-1890(2017).
[122] Daniault L, Hanna M, Lombard L et al. Coherent beam combining of two femtosecond fiber chirped-pulse amplifiers[J]. Optics Letters, 36, 621-623(2011).
[123] Siiman L A, Chang W Z, Zhou T et al. Coherent femtosecond pulse combining of multiple parallel chirped pulse fiber amplifiers[J]. Optics Express, 20, 18097-18116(2012).
[124] Bagayev S N, Leshchenko V E, Trunov V I et al. Coherent combining of femtosecond pulses parametrically amplified in BBO crystals[J]. Optics Letters, 39, 1517-1520(2014).
[125] Qian J Y, Wang P F, Peng Y J et al. Pulse combination and compression in hollow-core fiber for few-cycle intense mid-infrared laser generation[J]. Photonics Research, 9, 477-483(2021).
[126] Mu J E, Li Z L, Jing F et al. Coherent combination of femtosecond pulses via non-collinear cross-correlation and far-field distribution[J]. Optics Letters, 41, 234-237(2016).
[127] Peng C, Liang X Y, Liu R Q et al. High-precision active synchronization control of high-power, tiled-aperture coherent beam combining[J]. Optics Letters, 42, 3960-3963(2017).
[128] Su R T, Zhou P, Ma Y X et al. 1.2 kW average power from coherently combined single-frequency nanosecond all-fiber amplifier array[J]. Applied Physics Express, 6, 122702(2013).
[129] Su R T, Zhou P, Wang X L et al. Actively coherent beam combining of two single-frequency 1083 nm nanosecond fiber amplifiers in low-repetition-rate[J]. IEEE Photonics Technology Letters, 25, 1485-1487(2013).
[130] Wang T, Li C, Liu Y et al. Coherent polarization beam combination of two ultrafast laser channels based on fiber stretcher phase locking[J]. Infrared and Laser Engineering, 52, 20220869(2023).
[131] Zhou P, Liu Z J, Xu X J et al. Comparative study on the propagation performance of coherently combined and incoherently combined beams[J]. Optics Communications, 282, 1640-1647(2009).
[132] Vorontsov M A, Kolosov V. Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing[J]. Journal of the Optical Society of America A, 22, 126-141(2005).
[133] Liu L, Vorontsov M A, Polnau E et al. Adaptive phase-locked fiber array with wavefront phase tip-tilt compensation using piezoelectric fiber positioners[J]. Proceedings of SPIE, 6708, 67080K(2007).
[134] Bruesselbach H, Wang S, Minden M et al. Coherent phase-locking of seven laser transmitters on a 408 meter outdoor range[C], 746-748(2006).
[135] Jolivet V, Bourdon P, Bennai B Y et al. Beam shaping of single-mode and multimode fiber amplifier arrays for propagation through atmospheric turbulence[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 257-268(2009).
[136] Tao R, Ma Y, Si L et al. Target-in-the-loop high-power adaptive phase-locked fiber laser array using single-frequency dithering technique[J]. Applied Physics B, 105, 285-291(2011).
[137] Ma Y X, Zhou P, Tao R M et al. Target-in-the-loop coherent beam combination of 100 W level fiber laser array based on an extended target with a scattering surface[J]. Optics Letters, 38, 1019-1021(2013).
[138] Zhi D, Zhang Z X, Ma Y X et al. Realization of large energy proportion in the central lobe by coherent beam combination based on conformal projection system[J]. Scientific Reports, 7, 2199(2017).
[140] Xiao H. Study on Yb-doped fiber laser cascade pumping technology[D](2012).
[141] Li R X. Absorption characteristics of Yb-doped fiber for short wavelength laser[D](2017).
[142] Jiang M, Xiao H, Zhou P et al. High power self-organized coherent beam combination of 1018 nm Yb-doped fiber lasers[J]. High Power Laser and Particle Beams, 25, 2219-2222(2013).
[143] Wang X, Zhou P, Wang X L et al. 108 W coherent beam combining of two single-frequency Tm-doped fiber MOPAs[J]. Laser Physics Letters, 11, 105101(2014).
[144] Bowman D J, King M J, Sutton A J et al. Internally sensed optical phased array[J]. Optics Letters, 38, 1137-1139(2013).
[145] Roberts L E, Ward R L, Francis S P et al. High power compatible internally sensed optical phased array[J]. Optics Express, 24, 13467-13479(2016).
[146] Li F, Geng C, Li X Y et al. Phase-locking control in all fiber link based on fiber coupler[J]. Opto-Electronic Engineering, 44, 602-609(2017).
[147] Long J H, Su R T, Chang Q et al. Coherently combining of fiber lasers based on two-stage phase control[J]. Proceedings of SPIE, 11562, 115620Y(2020).
[148] Long J H, Chang H X, Zhang Y Q et al. Compact internal sensing phase locking system for coherent combining of fiber laser array[J]. Optics & Laser Technology, 148, 107775(2022).
[149] Long J H, Jin K K, Hou T Y et al. Wavefront aberration mitigation with adaptive distributed aperture fiber array lasers[J]. Proceedings of SPIE, 11890, 1189008(2021).
[150] Long J H, Su R T, Hou T Y et al. System design for coherent combined massive fiber laser array based on cascaded internal phase control[J]. Applied Optics, 61, 10222-10227(2022).
[151] Long J H, Zhang J Y, Chang H X et al. Coherent combining of a fiber laser array via cascaded internal phase control technique[J]. Chinese Optics Letters, 21, 081402(2023).
[152] Chang H X, Su R T, Long J H et al. Distributed active phase-locking of an all-fiber structured laser array by a stochastic parallel gradient descent (SPGD) algorithm[J]. Optics Express, 30, 1089-1098(2022).
[153] Chang H X, Su R T, Zhang Y Q et al. Cascaded internal phase control of all-fiber coherent fiber laser array[J]. Frontiers in Physics, 10, 913195(2022).
[154] Chang H X, Su R T, Chang Q et al. Internal phase control of coherent fiber laser array without ambiguous phase based on double wavelength detection[J]. Applied Optics, 61, 3429-3434(2022).
[155] Chang H X, Su R T, Long J H et al. Research progress of active phase-locking technique of an all-fiber coherent laser array[J]. High Power Laser and Particle Beams, 35, 041004(2023).
[156] Hou T Y, Zhi D, Tao R M et al. Spatially-distributed orbital angular momentum beam array generation based on greedy algorithms and coherent combining technology[J]. Optics Express, 26, 14945-14958(2018).
[157] Hou T, Zhang Y, Chang Q et al. High-power vortex beam generation enabled by a phased beam array fed at the nonfocal-plane[J]. Optics Express, 27, 4046-4059(2019).
[158] Long J H, Hou T Y, Chang Q et al. Generation of optical vortex lattices by a coherent beam combining system[J]. Optics Letters, 46, 3665-3668(2021).
[159] Long J H, Chang H X, Zhang J Y et al. Generating the optical vortex by optimizing beam arrangement of the coherent laser array[J]. Optics & Laser Technology, 167, 109757(2023).
[160] Kurti R S, Halterman K, Shori R K et al. Discrete cylindrical vector beam generation from an array of optical fibers[J]. Optics Express, 17, 13982-13988(2009).
[161] Ma P F, Zhou P, Ma Y X et al. Generation of azimuthally and radially polarized beams by coherent polarization beam combination[J]. Optics Letters, 37, 2658-2660(2012).
[162] Zhang Y Q, Hou T Y, Chang H X et al. Tight focusing properties and focal field tailoring of cylindrical vector beams generated from a linearly polarized coherent beam array[J]. Optics Express, 29, 5259-5269(2021).
[163] Zhang Y. Propagation and control of high-power fiber laser arrays[D](2022).
[164] Zhang J X, Fu S J, Sheng Q et al. Efficient 33.8 W mid-infrared fiber laser operating at 2.8 μm[J]. Chinese Journal of Lasers, 50, 0715001(2023).
[165] Guo C Y, Dong F L, Shen P S et al. Study on 20 W mid-infrared 2.8 μm all-fiber laser[J]. Chinese Journal of Lasers, 48, 1416001(2021).
[166] Zou J H, Hong J F, Zhao Z et al. 3.6 W compact all-fiber Pr3+-doped green laser at 521 nm[J]. Advanced Photonics, 4, 056001(2022).
[167] Shu B W, Zhang Y Q, Chang H X et al. Two-dimensional quasi-continuous scanning by tilting phase controlled coherent laser arrays[J]. Chinese Journal of Lasers, 51, 0205001(2024).
[168] Klenke A, Breitkopf S, Kienel M et al. 530 W, 13 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 38, 2283-2285(2013).
[169] Müller M, Kienel M, Klenke A et al. 1 kW 1 mJ eight-channel ultrafast fiber laser[J]. Optics Letters, 41, 3439-3442(2016).
[170] Becker N C, Hädrich S, Eidam T et al. Adaptive pre-amplification pulse shaping in a high-power, coherently combined fiber laser system[J]. Optics Letters, 42, 3916-3919(2017).
[171] Müller M, Klenke A, Steinkopff A et al. 3.5 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 43, 6037-6040(2018).
Get Citation
Copy Citation Text
Pu Zhou, Rongtao Su, Yanxing Ma, Jian Wu, Pengfei Ma, Can Li, Xiaolin Wang, Jinyong Leng, Yuqiu Zhang, Shuai Ren, Hongxiang Chang, Jinhu Long, Tao Wang, Min Jiang, Jun Li. Coherent Beam Combining of Fiber Lasers by Actively Phase Control[J]. Acta Optica Sinica, 2023, 43(17): 1700001
Category: Reviews
Received: Aug. 13, 2023
Accepted: Aug. 28, 2023
Published Online: Sep. 14, 2023
The Author Email: Pu Zhou (zhoupu203@163.com), Rongtao Su (surongtao@163.com)