Acta Optica Sinica, Volume. 40, Issue 22, 2210002(2020)
Low-Dose CT Denoising Algorithm Based on Improved Cycle GAN
Fig. 2. Feature converter residual structure network model. (a) ResNet network model; (b) DenseNet network model
Fig. 8. Denoising results of an image for patient No.48. (a) LDCT; (b) SDCT; (c) ST-NLM processed LDCT; (d) Res-CycleGAN processed LDCT; (e) Dense-CycleGAN processed LDCT
Fig. 9. Automatic calcification score of a computed tomography image. (a) SDCT Agatston score; (b) ST-NLM Agatston score; (c) Res-CycleGAN Agatston score; (d) Dense-CycleGAN Agatston score
Fig. 10. Denoising results of an image for patient No.79. (a) LDCT after adding noise; (b) original image; (c) ST-NLM; (d) Res-CycleGAN; (e) Dense-CycleGAN
|
|
Get Citation
Copy Citation Text
Siqi Zhu, Jue Wang, Yufang Cai. Low-Dose CT Denoising Algorithm Based on Improved Cycle GAN[J]. Acta Optica Sinica, 2020, 40(22): 2210002
Category: Image Processing
Received: Jun. 29, 2020
Accepted: Jul. 31, 2020
Published Online: Oct. 25, 2020
The Author Email: Wang Jue (wangjue@cqu.edu.cn)