Chinese Optics Letters, Volume. 20, Issue 2, 021101(2022)

Optical image processing using acousto-optic modulators as programmable volume holograms: a review [Invited]

Yaping Zhang1、*, Houxin Fan1, and Ting-Chung Poon2
Author Affiliations
  • 1Yunnan Provincial Key Laboratory of Modern Information Optics, Kunming University of Science and Technology, Kunming 650500, China
  • 2The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA
  • show less
    Figures & Tables(18)
    AOM illustrating diffraction of light by sound.
    Upshifted Bragg diffraction: (a) wavevector diagram and (b) experimental configuration. Adapted from Ref. [28].
    Downshifted Bragg diffraction: (a) wavevector diagram and (b) experimental configuration. Adapted from Ref. [28].
    Multiple diffraction. Adapted from Ref. [28].
    AOM modeled by a column of sound of width L. Adapted from Ref. [28].
    Diffraction geometry for upshifted Bragg operation. Adapted from Ref. [28].
    Characteristics of |H0(kx′)| and |H1(kx′′)| as a function of Q and α. (a) and (b) Transfer function for the zeroth-order beam and the first-order beam at Λ = 0.01 mm with Q = 14, respectively; (c) and (d) transfer function for the zeroth-order beam and the first-order beam at Λ = 0.01 mm with Q = 28, respectively.
    Flaptop beams obtained by the fine tuning of Q or α (alpha) through H1(kx′′Λ/π). Input laser beam is of the profile e−x2/2σ2. Reprinted with permission from Ref. [16] © The Optical Society.
    Diffraction by AOM and image formation by lens.
    Experimental results on the output plane: (a) image of the object on the output plane when the AOM is turned off; (b) images of the zeroth-order (left) and the first-order (right) beams. Reprinted from Ref. [8]. Note that the figures presented here are the actual images from the original printed article. The PDF version of the figures provided by the publisher has been smeared.
    (a) Input square object, (b) magnitude spectrum of (a), and (c) intensity of the zeroth-order light.
    (a) Cascaded AOM system and (b) intensity of the zeroth-order light |ψ0(2)(x′, y′)|2 at the exit of the cascade AOM system illustrating second-order differentiation operation.
    Intensity of the zeroth-order light |ψ0(2)(x′, y′)|2 at the exit of the cascade AOM system.
    Dual AOMs in a Mach–Zehnder interferometer.
    (a) Input, (b) image processing by a single AOM, and (c) image processing by dual AOMs in a Mach–Zehnder interferometer realizing the computing operation given by Eq. (28).
    (a) Image of a 1D chirp grating and (b) line trace across the red line in (a).
    (a) Spectrum of the chirp grating and shifted zeroth-order transfer function for Δδ = 0.15, (b) processed chirp grating, and (c) line trace across (b).
    Processed images for (a), (b) Δδ = 0.2 and (c), (d) Δδ = 0.25.
    Tools

    Get Citation

    Copy Citation Text

    Yaping Zhang, Houxin Fan, Ting-Chung Poon, "Optical image processing using acousto-optic modulators as programmable volume holograms: a review [Invited]," Chin. Opt. Lett. 20, 021101 (2022)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems and Image Processing

    Received: Aug. 14, 2021

    Accepted: Nov. 10, 2021

    Published Online: Dec. 13, 2021

    The Author Email: Yaping Zhang (yaping.zhang@gmail.com)

    DOI:10.3788/COL202220.021101

    Topics