Opto-Electronic Engineering, Volume. 50, Issue 7, 230107(2023)
2.8 μm passively Q-switched mode-locked fiber laser using TiCN as saturable absorber
[1] Edwards G S. Mechanisms for soft-tissue ablation and the development of alternative medical lasers based on investigations with mid-infrared free-electron lasers[J]. Laser Photon Rev, 3, 545-555(2009).
[2] Mackanos M A, Simanovskii D M, Schriver K E et al. Pulse-duration-dependent mid-infrared laser ablation for biological applications[J]. IEEE J Sel Top Quantum Electron, 18, 1514-1522(2012).
[3] Zhu X S, Zhu G W, Wei C et al. Pulsed fluoride fiber lasers at 3 μm[Invited]. J Opt Soc Am B, 34, A15-A28(2017).
[4] Frayssinous C, Fortin V, Bérubé J P et al. Resonant polymer ablation using a compact 3.44 μm fiber laser[J]. J Mater Process Technol, 252, 813-820(2018).
[5] Hodgkinson J, Tatam R P. Optical gas sensing: a review[J]. Meas Sci Technol, 24, 012004(2013).
[6] Vainio M, Merimaa M, Halonen L. Frequency-comb-referenced molecular spectroscopy in the mid-infrared region[J]. Opt Lett, 36, 4122-4124(2011).
[7] Baranwal N, Mahulikar S P. Review of Infrared signature suppression systems using optical blocking method[J]. Def Technol, 15, 432-439(2019).
[8] Tokita S, Murakami M, Shimizu S et al. 12 W Q-switched Er: ZBLAN fiber laser at 2.8 µm[J]. Opt Lett, 36, 2812-2814(2011).
[9] Li J F, Hu T, Jackson S D. Dual wavelength Q-switched cascade laser[J]. Opt Lett, 37, 2208-2210(2012).
[10] Frerichs C, Tauermann T. Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 µm[J]. Electron Lett, 30, 706-707(1994).
[11] Tang P H, Qin Z P, Liu J et al. Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 µm[J]. Opt Lett, 40, 4855-4858(2015).
[12] Wang J T, Wei J C, Liu W J et al. 2.8 µm passively Q-switched Er: ZBLAN fiber laser with an Sb saturable absorber mirror[J]. Appl Opt, 59, 9165-9168(2020).
[13] Paradis P, Boilard T, Fortin V et al. Dysprosium-doped silica fiber as saturable absorber for mid-infrared pulsed all-fiber lasers[J]. Opt Express, 30, 3367-3378(2022).
[14] Bharathan G, Xu L Y, Jiang X T et al. MXene and PtSe2 saturable absorbers for all-fibre ultrafast mid-infrared lasers[J]. Opt Mater Express, 11, 1898-1906(2021).
[15] Woodward R I, Kelleher E J R. 2D saturable absorbers for fibre lasers[J]. Appl Sci, 5, 1440-1456(2015).
[16] Wei C, Zhu X S, Norwood R A et al. Passively Q-switched 2.8-µm nanosecond fiber laser[J]. IEEE Photon Technol Lett, 24, 1741-1744(2012).
[17] Qin Z P, Hai T, Xie G Q et al. Black phosphorus Q-switched and mode-locked mid-infrared Er: ZBLAN fiber laser at 3.5 µm wavelength[J]. Opt Express, 26, 8224-8231(2018).
[18] Lü Y J, Wei C, Zhang H et al. Wideband tunable passively Q-switched fiber laser at 2.8 µm using a broadband carbon nanotube saturable absorber[J]. Photon Res, 7, 14-18(2019).
[19] Li Q R, Wei C, Chi H et al. Au nanocages saturable absorber for 3-µm mid-infrared pulsed fiber laser with a wide wavelength tuning range[J]. Opt Express, 27, 30350-30359(2019).
[20] Luo H Y, Li S Q, Wu X D et al. Unlocking the ultrafast potential of gold nanowires for mode-locking in the mid-infrared region[J]. Opt Lett, 46, 1562-1565(2021).
[21] Qin Z P, Xie G Q, Zhang H et al. Black phosphorus as saturable absorber for the Q-switched Er: ZBLAN fiber laser at 2.8 µm[J]. Opt Express, 23, 24713-24718(2015).
[22] Shakaty A A, Hmood J K, Mahdi B R et al. Passively mode-locked erbium-doped fiber laser based on a nanodiamond saturable absorber[J]. Appl Opt, 61, 4047-4054(2022).
[23] Zhu G W, Zhu X S, Wang F Q et al. Graphene mode-locked fiber laser at 2.8 µm[J]. IEEE Photon Technol Lett, 28, 7-10(2016).
[24] Li J F, Luo H Y, Wang L L et al. 3-μm mid-infrared pulse generation using topological insulator as the saturable absorber[J]. Opt Lett, 40, 3659-3662(2015).
[25] Chen Y, Jiang G B, Chen S Q et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation[J]. Opt Express, 23, 12823-12833(2015).
[26] Qin Z P, Xie G Q, Ma J G et al. 2.8 µm all-fiber Q-switched and mode-locked lasers with black phosphorus[J]. Photon Res, 6, 1074-1078(2018).
[27] Set S Y, Yaguchi H, Tanaka Y et al. Ultrafast fiber pulsed lasers incorporating carbon nanotubes[J]. IEEE J Sel Top Quantum Electron, 10, 137-146(2004).
[28] Wei C, Luo H Y, Zhang H et al. Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber[J]. Laser Phys Lett, 13, 105108(2016).
[29] Naguib M, Mochalin V N, Barsoum M W et al. 25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Adv Mater, 26, 992-1005(2014).
[30] Naguib M, Kurtoglu M, Presser V et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Adv Mater, 23, 4248-4253(2011).
[31] Okubo M, Sugahara A, Kajiyama S et al. MXene as a charge storage host[J]. Acc Chem Res, 51, 591-599(2018).
[32] Wang X F, Kajiyama S, Iinuma H et al. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors[J]. Nat Commun, 6, 6544(2015).
[33] Ran J R, Gao G P, Li F T et al. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production[J]. Nat Commun, 8, 13907(2017).
[34] Dong Y C, Chertopalov S, Maleski K et al. Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes[J]. Adv Mater, 30, 1705714(2018).
[35] Jiang X T, Liu S X, Liang W Y et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH)[J]. Laser Photon Rev, 12, 1700229(2018).
[36] Izui H, Hattori K, Komiya Y. Dry sliding wear resistance characterization of titanium matrix composites reinforced with titanium carbonitrides[J]. Mech Eng J, 7, 20-00029(2020).
[37] Akinribide O J, Obadele B A, Akinwamide S O et al. Sintering of binderless TiN and TiCN-based cermet for toughness applications: processing techniques and mechanical properties: a review[J]. Ceram Int, 45, 21077-21090(2019).
[38] Zhou Y L, Wang N, Qu X H et al. Arc-discharge synthesis of nitrogen-doped C embedded TiCN nanocubes with tunable dielectric/magnetic properties for electromagnetic absorbing applications[J]. Nanoscale, 11, 19994-20005(2019).
[39] Peyqambarian M, Azadi M, Ahangarani S. An evaluation of the effects of the N2/Ar gas flux ratio on various characteristics of TiC0.3N0.7 nano-structure coatings on the cold work tool steel by pulsed DC-PACVD[J]. Surf Coat Technol, 366, 366-374(2019).
[40] Ma X H, Liu S Q, Dai W W et al. Application of TiCN on passively harmonic mode-locked ultrashort pulse generation at 2µm[J]. Opt Laser Technol, 150, 107986(2022).
[41] Boyd R W[M]. Nonlinear Optics(2020).
[42] Hönninger C, Paschotta R, Morier-Genoud F et al. Q-switching stability limits of continuous-wave passive mode locking[J]. J Opt Soc Am B, 16, 46-56(1999).
Get Citation
Copy Citation Text
Shanshan Ye, Haibo Huang, Songyuan Chen, Junzhe Tao, Yuxuan Wen, Weiqing Gao. 2.8 μm passively Q-switched mode-locked fiber laser using TiCN as saturable absorber[J]. Opto-Electronic Engineering, 2023, 50(7): 230107
Category: Article
Received: May. 9, 2023
Accepted: Aug. 7, 2023
Published Online: Sep. 25, 2023
The Author Email: