International Journal of Extreme Manufacturing, Volume. 7, Issue 4, 45001(2025)

3D printing of hard/soft switchable hydrogels

Liu Guofeng, Xia Pengcheng, Kong Weicheng, Qiao Tianhong, Sun Yuan, Ren Wenjie, and He Yong
References(43)

[1] [1] Zhang X N, Zheng Q and Wu Z L. 2022. Recent advances in 3D printing of tough hydrogels: a review.CompositesB238, 109895.

[2] [2] Arwani R T et al. 2024. Stretchable ionic–electronic bilayer hydrogel electronics enablein situdetection of solid-state epidermal biomarkers.Nat. Mater.23, 1115–1122.

[3] [3] Zhou T et al. 2023. 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces.Nat. Mater.22, 895–902.

[4] [4] Chen Y W et al. 2024. 3D printed grafts with gradient structures for organized vascular regeneration.Int. J. Extrem. Manuf.6, 035503.

[5] [5] Li S N, Yang H L, Chen G Q, Zheng J X, Wang W Q, Ren J Y, Zhu C J, Yang Y B, Cong Y and Fu J. 2023. 4D printing of biomimetic anisotropic self-sensing hydrogel actuators.Chem. Eng. J.473, 145444.

[6] [6] Mishra A K, Pan W Y, Giannelis E P, Shepherd R F and Wallin T J. 2021. Making bioinspired 3D-printed autonomic perspiring hydrogel actuators.Nat. Protocols16, 2068–2087.

[7] [7] Li Y R, Xie M J, Lv S, Sun Y, Li Z, Gu Z M and He Y. 2023. A bionic controllable strain membrane for cell stretching at air-; liquid interface inspired by papercutting.Int. J. Extrem. Manuf.5, 045502.

[8] [8] Liu B et al. 2024. 4D printed hydrogel scaffold with swelling-stiffening properties and programmable deformation for minimally invasive implantation.Nat. Commun.15, 1587.

[9] [9] Shao H F et al. 2025. Modular scaffolds with intelligent visual guidance system forin situbone tissue repair.Int. J. Extrem. Manuf.7, 025503.

[10] [10] Zhao P C, Wang B L, Wang L, Fu Z X, Hu J, Liu Y D, Wang J and He Y. 2023. Rapid printing of 3D porous scaffolds for breast reconstruction.Bio-Des. Manuf.6, 691–703.

[11] [11] Calvert P. 2009. Hydrogels for soft machines.Adv. Mater.21, 743–756.

[12] [12] Qiao Q, Zhang X, Yan Z H, Hou C Y, Zhang J L, He Y, Zhao N, Yan S J, Gong Y P and Li Q. 2023. The use of machine learning to predict the effects of cryoprotective agents on the GelMA-based bioinks used in extrusion cryobioprinting.Bio-Des. Manuf.6, 464–477.

[13] [13] Dong M, Han Y, Hao X P, Yu H C, Yin J, Du M, Zheng Q and Wu Z L. 2022. Digital light processing 3D printing of tough supramolecular hydrogels with sophisticated architectures as impact-absorption elements.Adv. Mater.34, 2204333.

[14] [14] Bao B K et al. 2023. Rapid fabrication of physically robust hydrogels.Nat. Mater.22, 1253–1260.

[15] [15] Xing H Z, He X N, Wang Y J, Zhang X, Li L, Wang Y C, Cheng Z K, Wu H, Ge Q and Li X Y. 2023. Strong, tough, fatigue-resistant and 3D-printable hydrogel composites reinforced by aramid nanofibers.Mater. Today68, 84–95.

[16] [16] Hirsch M, Charlet A and Amstad E. 2021. 3D printing of strong and tough double network granular hydrogels.Adv. Funct. Mater.31, 2005929.

[17] [17] Xiang Z J, Li N, Rong Y J, Zhu L S and Huang X B. 2022. 3D-printed high-toughness double network hydrogels via digital light processing.Colloids Surf.A639, 128329.

[18] [18] Gao F, Xu Z Y, Liang Q F, Li H F, Peng L Q, Wu M M, Zhao X L, Cui X, Ruan C S and Liu W G. 2019. Osteochondral regeneration with 3D-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffolds.Adv. Sci.6, 1900867.

[19] [19] Huang H Y, Dong Z C, Ren X Y, Jia B, Li G W, Zhou S W, Zhao X and Wang W Z. 2023. High-strength hydrogels: fabrication, reinforcement mechanisms, and applications.Nano Res.16, 3475–3515.

[20] [20] Liu Q Y, Dong X Y, Qi H B, Zhang H Q, Li T, Zhao Y J, Li G J and Zhai W. 2024. 3D printable strong and tough composite organo-hydrogels inspired by natural hierarchical composite design principles.Nat. Commun.15, 3237.

[21] [21] Su T, Xu M X, Lu F and Chang Q. 2022. Adipogenesis or osteogenesis: destiny decision made by mechanical properties of biomaterials.RSC Adv.12, 24501–24510.

[22] [22] Liu X Y, Liu J, Lin S T and Zhao X H. 2020. Hydrogel machines.Mater. Today36, 102–124.

[23] [23] Zhao D W, Pang B, Zhu Y, Cheng W K, Cao K Y, Ye D D, Si C L, Xu G W, Chen C J and Yu H P. 2022. A stiffness-switchable, biomimetic smart material enabled by supramolecular reconfiguration.Adv. Mater.34, 2107857.

[24] [24] Xie M B et al. 2023. Volumetric additive manufacturing of pristine silk-based (bio) inks.Nat. Commun.14, 210.

[25] [25] Chen G D, Liang X Y, Zhang P, Lin S T, Cai C C, Yu Z Y and Liu J. 2022. Bioinspired 3D printing of functional materials by harnessing enzyme-induced biomineralization.Adv. Funct. Mater.32, 2113262.

[26] [26] Nepal D et al. 2023. Hierarchically structured bioinspired nanocomposites.Nat. Mater.22, 18–35.

[27] [27] Wegst U G K, Bai H, Saiz E, Tomsia A P and Ritchie R O. 2015. Bioinspired structural materials.Nat. Mater.14, 23–36.

[28] [28] de Espinosa L M, Meesorn W, Moatsou D and Weder C. 2017. Bioinspired polymer systems with stimuli-responsive mechanical properties.Chem. Rev.117, 12851–12892.

[29] [29] Ni C J et al. 2023. Shape memory polymer with programmable recovery onset.Nature622, 748–753.

[30] [30] Zhao X, Peng L-M, Chen Y, Zha X-J, Li W-D, Bai L, Ke K, Bao R-Y, Yang M-B and Yang W. 2021. Phase change mediated mechanically transformative dynamic gel for intelligent control of versatile devices.Mater. Horiz.8, 1230–1241.

[31] [31] Fang Y L, Bai Z X, Yang L, Liu Q W, Xu W M, Wei J J, Yang K, Wang Q Y and Cui J X. 2024. Reversible phase changeinduced hardening and softening for conditions-adaptive and mechanics-reconfigurable applications.Adv. Funct. Mater.34, 2314353.

[32] [32] Liu K et al. 2021. Biomimetic impact protective supramolecular polymeric materials enabled by quadruple H-bonding.J. Am. Chem. Soc.143, 1162–1170.

[33] [33] He C-F, Qiao T-H, Wang G-H, Sun Y and He Y. 2025. Highresolution projection-based 3D bioprinting.Nat. Rev. Bioeng.3, 143–158.

[34] [34] Wang G, Xu C, Kong W Q, Englmair G, Fan J H, Wei G S and Furbo S. 2021. Review on sodium acetate trihydrate in flexible thermal energy storages: properties, challenges and applications.J. Energy Storage40, 102780.

[35] [35] Kabekkodu S N, Dosen A and Blanton T N. 2024. PDF-5+: a comprehensive powder diffraction file™ for materials characterization.Powder Diffr.39, 47–59.

[36] [36] Prasad M R, Deb P K, Chandrasekaran B, Maheshwari R and Tekade R K. 2018. Basics of crystallization process applied in drug exploration.In Dosage Form Design Parameters: Dosage Form Design Parameters: Volume II: A Volume in Advances in Pharmaceutical Product Development and Research(ed R K Tekade) (Academic Press, an imprint of Elsevier) pp 67–103.

[37] [37] Sosso G C, Chen J, Cox S J, Fitzner M, Pedevilla P, Zen A and Michaelides A. 2016. Crystal nucleation in liquids: open questions and future challenges in molecular dynamics simulations.Chem. Rev.116, 7078–7116.

[38] [38] Liu Y Z, Li X X, Xu Y Z, Fu B W, Song C Y, Shang W, Tao P and Deng T. 2024. Hydrogel-stabilized supercooled salt hydrates for seasonal storage and controlled release of solar-thermal energy.J. Mater. Chem.A12, 31982–31992.

[39] [39] Li Z K et al. 2024. Self-healing hydrogel bioelectronics.Adv. Mater.36, 2306350.

[40] [40] Wu S W et al. 2021. Poly (vinyl alcohol) hydrogels with broadrange tunable mechanical properties via the hofmeister effect.Adv. Mater.33, 2007829.

[41] [41] Jin Y J, Lu S, Chen X R, Fang Q Y, Guan X, Qin L G, Chen C Y and Zhao C Z. 2024. Time-salt type superposition and salt processing of poly (methacrylamide) hydrogel based on hofmeister series.Macromolecules57, 2746–2755.

[42] [42] ISO 13732-1 2006Ergonomics of the thermal environment–methods for the assessment of human responses to contact with surfaces–part 1: hot surfaces.

[43] [43] Yun C, You J, Kim J, Huh J and Kim E. 2009. Photochromic fluorescence switching from diarylethenes and its applications.J. Photochem. Photobiol.C10, 111–129.

Tools

Get Citation

Copy Citation Text

Liu Guofeng, Xia Pengcheng, Kong Weicheng, Qiao Tianhong, Sun Yuan, Ren Wenjie, He Yong. 3D printing of hard/soft switchable hydrogels[J]. International Journal of Extreme Manufacturing, 2025, 7(4): 45001

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: Sep. 23, 2024

Accepted: Sep. 9, 2025

Published Online: Sep. 9, 2025

The Author Email:

DOI:10.1088/2631-7990/adbd97

Topics