Laser & Optoelectronics Progress, Volume. 57, Issue 10, 101011(2020)

A Face Recognition Algorithm Based on Adaptive Weighted Curvelet Gradient Direction Histogram

Huixian Yang, Xiaoxiao Li*, and Weifa Gan
Author Affiliations
  • Physics and Optoelectronic Engineering College, Xiangtan University, Xiangtan, Hunan 411105, China
  • show less
    Figures & Tables(14)
    Fusion images at four scales. (a) Scale 1; (b) scale 2; (c) scale 3; (d) scale 4
    Flow of AWCHOG algorithm
    ORL face dataset. (a) Image 1; (b) image 2; (c) image 3; (d) image 4; (e) image 5; (f) image 6
    AR face dataset. (a) Training sample; (b) facial express subset; (c) illumination subset; (d) partial occlusion subset A; (e) partial occlusion subset B
    CAS-PEAL face dataset. (a) Training sample; (b) Express subset; (c) Background subset; (d) Accessory subset
    Recognition rate of ORL face dataset at different gradient directions
    Recognition rate of ORL face dataset in different block modes. (a) Coarse floor; (b) detail 1 floor; (c) detail 2 floor; (d) fine floor
    • Table 1. Form of Curvelet coefficients after Curvelet transform for 112 pixel×92 pixel face image

      View table

      Table 1. Form of Curvelet coefficients after Curvelet transform for 112 pixel×92 pixel face image

      Coefficient levelCoefficient matrix formDimension
      Coarse19×15 matrix285
      Detail 11×8 cell consisting of the matrix of size 17×31 or 37×154328
      Detail 21×16 cell consisting of the matrix of size 32×31 or 28×30 or 38×26 or 38×2314776
      Fine112×92 matrix10304
    • Table 2. Recognition rate of Curvelet transform at different scales

      View table

      Table 2. Recognition rate of Curvelet transform at different scales

      ScaleRecognition rate /%
      ORLARCAS-PEAL
      190.0091.0098.14
      292.5092.3398.54
      393.0094.6798.89
      495.5095.6799.20
      589.5090.6795.94
    • Table 3. Recognition rate on ORL database

      View table

      Table 3. Recognition rate on ORL database

      AlgorithmRecognition rate /%
      Image 2Image 3Image 4Image 5Image 6
      Wavelet83.1388.2187.9293.7496.50
      HOG85.0089.2992.5097.0096.88
      Curvelet+PCA+SRC88.2193.3394.0095.0095.83
      Gabor+HOG90.4194.6197.2198.2098.69
      NSCT+LBP89.1494.7996.2098.1198.69
      AWNHOG82.2587.2191.2595.0096.88
      AWCHOG+CRC90.1286.7992.5096.5097.33
      AWCHOG+KNN90.7195.5096.8898.7599.27
    • Table 4. Recognition rate on CAS-PEAL database

      View table

      Table 4. Recognition rate on CAS-PEAL database

      AlgorithmRecognition rate /%
      Expression subsetAccessory subsetBackground subset
      Wavelet96.4578.6178.89
      HOG99.2069.0093.00
      Curvelet+PCA+SRC97.3478.8980.83
      Gabor+HOG99.7387.2295.56
      NSCT+LBP99.3874.2592.75
      AWNHOG99.6380.5099.00
      AWCHOG+CRC99.3398.6795.00
      AWCHOG+KNN99.7597.5098.50
    • Table 5. Recognition rate on AR database

      View table

      Table 5. Recognition rate on AR database

      AlgorithmRecognition rate /%
      Facial expresssubsetIlluminationsubsetPartial occlusionsubset APartial occlusionsubset B
      Wavelet92.6780.5079.5062.00
      HOG91.3390.3369.0049.00
      Curvelet+PCA+SRC94.6785.5091.3373.67
      Gabor+HOG96.3397.5081.0076.50
      NSCT+LBP96.6798.3396.6776.00
      AWNHOG98.3399.6796.6782.67
      AWCHOG+CRC95.3396.6793.6780.33
      AWCHOG+KNN99.5098.8996.0090.00
    • Table 6. Results of different algorithms on AR illumination subset after adding Gaussian noise

      View table

      Table 6. Results of different algorithms on AR illumination subset after adding Gaussian noise

      MethodNormalized variance of Gaussion white noiseφ
      00.00010.00020.00030.0004
      Wavelet80.5039.0021.5016.6714.6781.78
      HOG90.3368.3358.6753.6752.3342.06
      Curvelet+PCA+SRC85.5071.6768.3367.6765.6723.19
      Gabor+HOG97.5086.0084.6781.0079.3318.63
      NSCT+LBP98.3391.5085.5074.0070.5028.30
      AWNHOG99.6793.6790.3383.6779.6720.06
      AWCHOG+KNN98.8998.0096.6791.6790.678.31
    • Table 7. Dimensionality and time of different algorithms on ORL face dataset

      View table

      Table 7. Dimensionality and time of different algorithms on ORL face dataset

      MethodFeaturedimensionalityT1 /msT2 /ms
      Wavelet192016.414.2
      HOG3204.538.1
      Curvelet+PCA+SRC285033.241.4
      Gabor+HOG9600163.398.9
      NSCT+LBP3696856.330.1
      AWNHOG204815.938.3
      AWCHOG+KNN227214.535.7
    Tools

    Get Citation

    Copy Citation Text

    Huixian Yang, Xiaoxiao Li, Weifa Gan. A Face Recognition Algorithm Based on Adaptive Weighted Curvelet Gradient Direction Histogram[J]. Laser & Optoelectronics Progress, 2020, 57(10): 101011

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Sep. 22, 2019

    Accepted: Oct. 18, 2019

    Published Online: May. 8, 2020

    The Author Email: Xiaoxiao Li (760262251@qq.com)

    DOI:10.3788/LOP57.101011

    Topics