Journal of the Chinese Ceramic Society, Volume. 53, Issue 4, 924(2025)

Analyzing Anchoring and Catalytic Properties of g-C3N4 for Na-S Batteries via First-Principles

REN Naiqing1、*, JIANG Yanwei1, WANG Muqian1, WU Liang2, WANG Lifeng1, and YIN Yichen1
Author Affiliations
  • 1School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
  • 2School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China
  • show less
    References(41)

    [1] [1] ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: A review[J]. Energy Environ Sci, 2011, 4(9): 3243–3262.

    [2] [2] LU D, LI R H, RAHMAN M M, et al. Ligand-channel-enabled ultrafast Li-ion conduction[J]. Nature, 2024, 627(8002): 101–107.

    [3] [3] LI J L, FLEETWOOD J, BLAKE HAWLEY W, et al. From materials to cell: State-of-the-art and prospective technologies for lithium-ion battery electrode processing[J]. Chem Rev, 2022, 122(1): 903–956.

    [4] [4] REN N Q, WANG L F, HE X D, et al. High ICE hard carbon anodes for lithium-ion batteries enabled by a high work function[J]. ACS Appl Mater Interfaces, 2021, 13(39): 46813–46820.

    [5] [5] YANG J L, ZHAO X X, MA M Y, et al. Progress and prospect on the recycling of spent lithium-ion batteries: Ending is beginning[J]. Carbon Neutralization, 2022, 1(3): 247–266.

    [6] [6] LI J Y, HU H Y, WANG J Z, et al. Surface chemistry engineering of layered oxide cathodes for sodium-ion batteries[J]. Carbon Neutralization, 2022, 1(2): 96–116.

    [7] [7] WANG L F, REN N Q, JIANG W, et al. Tailoring Na+ solvation environment and electrode-electrolyte interphases with Sn(OTf)2 additive in non-flammable phosphate electrolytes towards safe and efficient Na-S batteries[J]. Angew Chem Int Ed, 2024, 63(12): e202320060.

    [8] [8] HUANG X L, WANG Y X, CHOU S L, et al. Materials engineering for adsorption and catalysis in room-temperature Na–S batteries[J]. Energy Environ Sci, 2021, 14(7): 3757–3795.

    [9] [9] LEI Y J, LIU H W, YANG Z, et al. A review on the status and challenges of cathodes in room-temperature Na-S batteries[J]. Adv Funct Mater, 2023, 33(11): 2212600.

    [10] [10] YAN Z C, LIANG Y R, XIAO J, et al. A high-kinetics sulfur cathode with a highly efficient mechanism for superior room-temperature Na-S batteries[J]. Adv Mater, 2020, 32(8): e1906700.

    [11] [11] ZHANG B W, SHENG T, WANG Y X, et al. Long-life room-temperature sodium-sulfur batteries by virtue of transition-metal- nanocluster-sulfur interactions[J]. Angew Chem Int Ed, 2019, 58(5): 1484–1488.

    [12] [12] XIAO F P, YANG X M, WANG H K, et al. Covalent encapsulation of sulfur in a MOF-derived S, N-doped porous carbon host realizedviathe vapor-infiltration method results in enhanced sodium–sulfur battery performance[J]. Adv Energy Mater, 2020, 10(23): 2000931.

    [15] [15] WANG N N, WANG Y X, BAI Z C, et al. High-performance room-temperature sodium–sulfur battery enabled by electrocatalytic sodium polysulfides full conversion[J]. Energy Environ Sci, 2020, 13(2): 562–570.

    [16] [16] GUO B S, DU W Y, YANG T T, et al. Nickel hollow spheres concatenated by nitrogen-doped carbon fibers for enhancing electrochemical kinetics of sodium-sulfur batteries[J]. Adv Sci, 2019, 7(4): 1902617.

    [17] [17] YANG H L, ZHOU S, ZHANG B W, et al. Architecting freestanding sulfur cathodes for superior room-temperature Na–S batteries[J]. Adv Funct Mater, 2021, 31(32): 2102280.

    [18] [18] MA D T, LI Y L, YANG J B, et al. New strategy for polysulfide protection based on atomic layer deposition of TiO2 onto ferroelectric- encapsulated cathode: Toward ultrastable free-standing room temperature sodium–sulfur batteries[J]. Adv Funct Mater, 2018, 28(11): 1705537.

    [19] [19] YAN Z C, XIAO J, LAI W H, et al. Nickel sulfide nanocrystals on nitrogen-doped porous carbon nanotubes with high-efficiency electrocatalysis for room-temperature sodium-sulfur batteries[J]. Nat Commun, 2019, 10(1): 4793.

    [20] [20] LIU H W, PEI W, LAI W H, et al. Electrocatalyzing S cathodesviamultisulfiphilic sites for superior room-temperature sodium-sulfur batteries[J]. ACS Nano, 2020, 14(6): 7259–7268.

    [21] [21] WANG L J, SHI H D, XIE Y P, et al. Boosting solid–solid conversion kinetics of sulfurized polyacrylonitrileviaMoS2 doping for high-rate and long-life Li-S batteries[J]. Carbon Neutralization, 2023, 2(3): 262–270.

    [22] [22] LAI D W, WANG D H, ZHENG D L, et al. General synthesis of single-atom catalysts for hydrogen evolution reactions and room-temperature Na-S batteries[J]. Angew Chem Int Ed, 2020, 59(49): 22171–22178.

    [23] [23] WANG L F, WANG H Y, ZHANG S P, et al. Manipulating the electronic structure of nickelviaalloying with iron: Toward high-kinetics sulfur cathode for Na-S batteries[J]. ACS Nano, 2021, 15(9): 15218–15228.

    [24] [24] WANG Y, HUANG X L, LIU H W, et al. Nanostructure engineering strategies of cathode materials for room-temperature Na-S batteries[J]. ACS Nano, 2022, 16(4): 5103–5130.

    [25] [25] YANG K Y, ZHANG L S, WANG W T, et al. Multiscale modeling for enhanced battery health analysis: Pathways to longevity[J]. Carbon Neutralization, 2024, 3(3): 348–385.

    [26] [26] KONG F, CHEN L, YANG M R, et al. Investigation of the anchoring and electrocatalytic properties of pristine and doped borophosphene for Na–S batteries[J]. Phys Chem Chem Phys, 2023, 25(7): 5443–5452.

    [27] [27] ZHANG P Y, JIANG L Y, JIANG X L, et al. Enhancement of sodium-sulfur battery’s performance through transition metal single-atom catalysts on 12 borophene substrate: First-principles calculations[J]. J Energy Storage, 2024, 88: 111528.

    [28] [28] ZHANG K Q, LEE T H, CHA J H, et al. Two-dimensional boron nitride as a sulfur fixer for high performance rechargeable aluminum-sulfur batteries[J]. Sci Rep, 2019, 9(1): 13573.

    [29] [29] XU W L, FENG T R, XIA J Z, et al. Single-atom catalysts based on C2N for sulfur cathodes in Na–S batteries: A first-principles study[J]. Phys Chem Chem Phys, 2024, 26(21): 15657–15665.

    [30] [30] THOMAS S A, PALLAVOLU M R, KHAN M E, et al. Graphitic carbon nitride (g-C3N4): Futuristic material for rechargeable batteries[J]. J Energy Storage, 2023, 68: 107673.

    [31] [31] WENG D G, XIE P Y, WANG H, et al. A promising carbon/g-C3N4 composite negative electrode for a long-life sodium-ion battery[J]. Angew Chem Int Ed, 2019, 58(39): 13727–13733.

    [33] [33] CHEN Y Y, WU Y, LI L, et al. Polysulfides manipulation: Constructing g-C3N4 networks encapsulated into natural wood fibers for high-performance lithium–sulfur batteries[J]. Chem Eng J, 2023, 461: 141988.

    [34] [34] YAO X L, XU J J, HONG Z L, et al. Metal/graphene composites with strong metal-S bondings for sulfur immobilization in Li-S batteries[J]. J Phys Chem C, 2018, 122(6): 3263–3272.

    [35] [35] ZHANG W Q, CHEN M F, LUO Y X, et al. Utilizing 2D layered structure Cu-g-C3N4 electrocatalyst for optimizing polysulfide conversion in wide-temperature Li-S batteries[J]. Chem Eng J, 2024, 486: 150411.

    [36] [36] KRESSE G, FURTHMLLER J. Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set[J]. Phys Rev B Condens Matter, 1996, 54(16): 11169–11186.

    [37] [37] HAAS P, TRAN F, BLAHA P, et al. Insight into the performance of GGA functionals for solid-state calculations[J]. Phys Rev B, 2009, 80(19): 195109.

    [38] [38] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865–3868.

    [39] [39] MOELLMANN J, GRIMME S. DFT-D3 study of some molecular crystals[J]. J Phys Chem C, 2014, 118(14): 7615–7621.

    [40] [40] PAN L Y, DING Y F, YIN S F, et al. Constructing a built-in electric field in monolayer g-C3N4 by carbon and oxygen co-doping for enhanced photocatalytic oxidation of toluene to benzaldehyde activity[J]. Surf Interfaces, 2023, 36: 102601.

    [41] [41] ZHU B C, ZHANG J F, JIANG C J, et al. First principle investigation of halogen-doped monolayer g-C3N4 photocatalyst[J]. Appl Catal B Environ, 2017, 207: 27–34.

    [42] [42] DU A J, SANVITO S, LI Z, et al. Hybrid graphene and graphitic carbon nitride nanocomposite: Gap opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response[J]. J Am Chem Soc, 2012, 134(9): 4393–4397.

    [43] [43] JAYAN RAHUL, ISLAM MD MAHBUBUL. Design principles of bifunctional electrocatalysts for engineered interfaces in Na-S batteries[J]. ACS Catalysis, 2021, 11(24): 15149–15161.

    [44] [44] JIANG Y, YU Z X, ZHOU X F, et al. Single-atom vanadium catalyst boosting reaction kinetics of polysulfides in Na-S batteries[J]. Adv Mater, 2023, 35(8): e2208873.

    Tools

    Get Citation

    Copy Citation Text

    REN Naiqing, JIANG Yanwei, WANG Muqian, WU Liang, WANG Lifeng, YIN Yichen. Analyzing Anchoring and Catalytic Properties of g-C3N4 for Na-S Batteries via First-Principles[J]. Journal of the Chinese Ceramic Society, 2025, 53(4): 924

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 28, 2024

    Accepted: May. 29, 2025

    Published Online: May. 29, 2025

    The Author Email: REN Naiqing (rennq@cumt.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20240758

    Topics