Journal of Synthetic Crystals, Volume. 52, Issue 5, 894(2023)

Mechanism of Remote Heteroepitaxial GaN Growth on Graphene

XU Jianxi1,2、*, WANG Yuning2, XU Yu2,3, WANG Jianfeng2,3,4, and XU Ke2,3,4
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    References(22)

    [4] [4] DENBAARS S P, FEEZELL D, KELCHNER K, et al. Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays[J]. Acta Materialia, 2013, 61(3): 945-951.

    [5] [5] KUMAR K, SANTRA S B. Performance analysis of a three-phase propulsion inverter for electric vehicles using GaN semiconductor devices[J]. IEEE Transactions on Industry Applications, 2018, 54(6): 6247-6257.

    [6] [6] ROCCAFORTE F, FIORENZA P, GRECO G, et al. Recent advances on dielectrics technology for SiC and GaN power devices[J]. Applied Surface Science, 2014, 301: 9-18.

    [7] [7] OHNO Y, KUZUHARA M. Application of GaN-based heterojunction FETs for advanced wireless communication[J]. IEEE Transactions on Electron Devices, 2001, 48(3): 517-523.

    [8] [8] KIM Y, CRUZ S S, LEE K, et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer[J]. Nature, 2017, 544(7650): 340-343.

    [9] [9] JEONG J, WANG Q X, CHA J, et al. Remote heteroepitaxy of GaN microrod heterostructures for deformable light-emitting diodes and wafer recycle[J]. Science Advances, 2020, 6(23): eaaz5180.

    [10] [10] JEONG J, JIN D K, CHOI J, et al. Transferable, flexible white light-emitting diodes of GaN p-n junction microcrystals fabricated by remote epitaxy[J]. Nano Energy, 2021, 86: 106075.

    [11] [11] PARK J H, LEE J Y, PARK M D, et al. Influence of temperature-dependent substrate decomposition on graphene for separable GaN growth[J]. Advanced Materials Interfaces, 2019, 6(18): 1900821.

    [12] [12] ZHU Y H, WANG M Y, SHI M, et al. Correlation on GaN epilayer quality and strain in GaN-based LEDs grown on 4-in. Si(111) substrate[J]. Superlattices and Microstructures, 2015, 85: 798-805.

    [13] [13] KIM H, CHANG C S, LEE S, et al. Remote epitaxy[J]. Nature Reviews Methods Primers, 2022, 2(1): 1-21.

    [14] [14] QU Y P, XU Y, CAO B, et al. Long-range orbital hybridization in remote epitaxy: the nucleation mechanism of GaN on different substrates via single-layer graphene[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 2263-2274.

    [15] [15] KOVCS A, DUCHAMP M, DUNIN-BORKOWSKI R E, et al. Graphoepitaxy of high-quality GaN layers on graphene/6H-SiC[J]. Advanced Materials Interfaces, 2015, 2(2): 1400230.

    [16] [16] ALASKAR Y, ARAFIN S, WICKRAMARATNE D, et al. Towards van der Waals epitaxial growth of GaAs on Si using a graphene buffer layer[J]. Advanced Functional Materials, 2014, 24(42): 6629-6638.

    [17] [17] LIU J Q, WANG J F, LIU Y F, et al. High-resolution X-ray diffraction analysis on HVPE-grown thick GaN layers[J]. Journal of Crystal Growth, 2009, 311(10): 3080-3084.

    [18] [18] CHEN J, WANG J F, WANG H, et al. Measurement of threading dislocation densities in GaN by wet chemical etching[J]. Semiconductor Science and Technology, 2006, 21(9): 1229-1235.

    [19] [19] TARSA E J, HEYING B, WU X H, et al. Homoepitaxial growth of GaN under Ga-stable and N-stable conditions by plasma-assisted molecular beam epitaxy[J]. Journal of Applied Physics, 1997, 82(11): 5472-5479.

    [20] [20] KAPOLNEK D, WU X H, HEYING B, et al. Structural evolution in epitaxial metalorganic chemical vapor deposition grown GaN films on sapphire[J]. Applied Physics Letters, 1995, 67(11): 1541-1543.

    [21] [21] KIM J, BAYRAM C, PARK H, et al. Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene[J]. Nature Communications, 2014, 5(1): 1-7.

    [22] [22] ZHOU H, XU Y, CHEN X W, et al. Direct van der Waals epitaxy of stress-free GaN films on PECVD grown graphene[J]. Journal of Alloys and Compounds, 2020, 844: 155870.

    [23] [23] CHEN Y, ZANG H, JIANG K, et al. Improved nucleation of AlN on in situ nitrogen doped graphene for GaN quasi-van der Waals epitaxy[J]. Applied Physics Letters, 2020, 117(5): 051601.

    [24] [24] ZHANG Y C, SU K, GUO R, et al. Investigation of GaN with low threading dislocation density grown on graphene/sputtered AlN composite substrate[J]. Physica Status Solidi (RRL) - Rapid Research Letters, 2019, 13(8): 1900167.

    Tools

    Get Citation

    Copy Citation Text

    XU Jianxi, WANG Yuning, XU Yu, WANG Jianfeng, XU Ke. Mechanism of Remote Heteroepitaxial GaN Growth on Graphene[J]. Journal of Synthetic Crystals, 2023, 52(5): 894

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 20, 2023

    Accepted: --

    Published Online: Jun. 11, 2023

    The Author Email: XU Jianxi (xjx0105@mail.ustc.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics