Journal of the Chinese Ceramic Society, Volume. 51, Issue 9, 2214(2023)
Challenges and Strategies for Low Cost Cobalt-Free High-Nickel Cathode Materials
[1] [1] MIZUSHIMA K, JONES P C, WISEMAN P J, et al. LixCoO2 "(0<x≤1) -A New Cathode Material for Batteries of High Density[J]. Mater Res Bull, 1980, 15(6): 783-789.
[2] [2] MYUNG S T, MAGLIA F, PARK K J, et al. Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives[J]. ACS Energy Lett, 2017, 2: 196v223.
[3] [3] LEE S, MANTHIRAM A. Can cobalt be eliminated from lithium-ion batteries?[J]. ACS Energy Lett, 2022, 7(9): 3058-3063.
[4] [4] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: a perspective[J]. J Am Chem Soc, 2013, 135(4): 1167-1176.
[5] [5] MANTHIRAM A. A reflection on lithium-ion battery cathode chemistry[J]. Nat Commun, 2020, 11(1): 1550.
[6] [6] KIM Y, SEONG W M, MANTHIRAM A. Cobalt-free, high-nickel layered oxide cathodes for lithium-ion batteries: progress, challenges, and perspectives[J]. Energy Storage Mater, 2021, 34: 250-259.
[7] [7] HOANG K, JOHANNES M D. Defect chemistry in layered transition-metal oxides from screened hybrid density functional calculations[J]. J Mater Chem A, 2014, 2(15): 5224-5235.
[8] [8] DAS H, URBAN A, HUANG W X, et al. First-principles simulation of the (Li-Ni-vacancy)O phase diagram and its relevance for the surface phases in Ni-rich Li-ion cathode materials[J]. Chem Mater, 2017, 29(18): 7840-7851.
[9] [9] PARK K S, PARK S H, SUN Y K, et al. Effect of oxygen flow rate on the structural and electrochemical properties of lithium nickel oxides synthesized by the Sol-gel method[J]. J Appl Electrochem, 2002, 32(11): 1229-1233.
[10] [10] BIANCHINI M, ROCA-AYATS M, HARTMANN P, et al. There and back again-the journey of LiNiO2 as a cathode active material[J]. Angew Chem Int Ed Engl, 2019, 58(31): 10434-10458.
[11] [11] BAK S M, HU E Y, ZHOU Y N, et al. Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy[J]. ACS Appl Mater Interfaces, 2014, 6(24): 22594-22601.
[12] [12] LI H, ZHANG N, LI J, et al. Updating the structure and electrochemistry of LixNiO2 for 0≤x≤1[J]. J Electrochem Soc, 2018, 165(13): A2985.
[13] [13] MOCK M, BIANCHINI M, FAUTH F, et al. Atomistic understanding of the LiNiO2-NiO2 phase diagram from experimentally guided lattice models[J]. J Mater Chem A, 2021, 9(26): 14928-14940.
[15] [15] YOON C S, JUN D W, MYUNG S T, et al. Structural stability of LiNiO2 cycled above 4.2 V[J]. ACS Energy Lett, 2017, 2(5): 1150-1155.
[16] [16] LUO Y H, WEI H X, TANG L B, et al. Nickel-rich and cobalt-free layered oxide cathode materials for lithium ion batteries[J]. Energy Storage Mater, 2022, 50: 274-307.
[17] [17] LI H Y, CORMIER M, ZHANG N, et al. Is cobalt needed in Ni-rich positive electrode materials for lithium ion batteries?[J]. J Electrochem Soc, 2019, 166(4): A429-A439.
[18] [18] AISHOVA A, PARK G T, YOON C S, et al. Cobalt-free high-capacity Ni-rich layered Li[Ni0.9Mn0.1]O2 cathode[J]. Adv Energy Mater, 2020, 10(4): 1903179.
[19] [19] KIM Y, KIM D, KANG S. Experimental and first-principles thermodynamic study of the formation and effects of vacancies in layered lithium nickel cobalt oxides[J]. Chem Mater, 2011, 23(24): 5388-5397.
[20] [20] ZHAO J Q, ZHANG W, HUQ A, et al. In situ probing and synthetic control of cationic ordering in Ni-rich layered oxide cathodes[J]. Adv Energy Mater, 2017, 7(3): 1601266.
[21] [21] XIAO Y G, LIU T C, LIU J J, et al. Insight into the origin of lithium/nickel ions exchange in layered Li(NixMnyCoz)O2 cathode materials[J]. Nano Energy, 2018, 49: 77-85.
[22] [22] LIU T, YU L, LIU J, et al. Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries[J]. Nat Energy, 2021, 6(3): 277-286.
[23] [23] ZHANG C F, WAN J J, LI Y X, et al. Restraining the polarization increase of Ni-rich and low-Co cathodes upon cycling by Al-doping[J]. J Mater Chem A, 2020, 8(14): 6893-6901.
[24] [24] LAI J, ZHANG J, LI Z W, et al. Structural elucidation of the degradation mechanism of nickel-rich layered cathodes during high-voltage cycling[J]. Chem Commun, 2020, 56(36): 4886-4889.
[25] [25] RYU H H, PARK K J, YOON D R, et al. Li[Ni0.9Co0.09W0.01]O2: a new type of layered oxide cathode with high cycling stability[J]. Adv Energy Mater, 2019, 9(44): 1902698.
[26] [26] LI W D, LEE S, MANTHIRAM A. High-nickel NMA: a cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries[J]. Adv Mater, 2020, 32(33): 2002718.
[27] [27] LEE S, LI W D, DOLOCAN A, et al. In-depth analysis of the degradation mechanisms of high-nickel, low/No-cobalt layered oxide cathodes for lithium-ion batteries[J]. Adv Energy Mater, 2021, 11(31): 2100858.
[28] [28] MU L Q, KAN W H, KUAI C G, et al. Structural and electrochemical impacts of Mg/Mn dual dopants on the LiNiO2 cathode in Li-metal batteries[J]. ACS Appl Mater Interfaces, 2020, 12(11): 12874-12882.
[29] [29] MURALIDHARAN N, ESSEHLI R, HERMANN R P, et al. Lithium iron aluminum Nickelate, LiNixFeyAlzO2-New sustainable cathodes for next-generation cobalt-free li-ion batteries[J]. Adv Mater, 2020, 32(34): 2002960.
[30] [30] MURALIDHARAN N, ESSEHLI R, HERMANN R P, et al. LiNixFeyAlzO2, a new cobalt-free layered cathode material for advanced Li-ion batteries[J]. J Power Sources, 2020, 471: 228389.
[31] [31] KIM U H, JUN D W, PARK K J, et al. Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries[J]. Energy Environ Sci, 2018, 11(5): 1271-1279.
[32] [32] HE T, LU Y, SU Y F, et al. Sufficient utilization of zirconium ions to improve the structure and surface properties of nickel-rich cathode materials for lithium-ion batteries[J]. ChemSusChem, 2018, 11(10): 1639-1648.
[33] [33] KONG D F, HU J T, CHEN Z F, et al. Ti-gradient doping to stabilize layered surface structure for high performance high-Ni oxide cathode of Li-ion battery[J]. Adv Energy Mater, 2019, 9(41): 1901756.
[34] [34] MU L Q, ZHANG R, KAN W H, et al. Dopant distribution in Co-free high-energy layered cathode materials[J]. Chem Mater, 2019, 31(23): 9769-9776.
[35] [35] WANG C Y, HAN L L, ZHANG R, et al. Resolving atomic-scale phase transformation and oxygen loss mechanism in ultrahigh-nickel layered cathodes for cobalt-free lithium-ion batteries[J]. Matter, 2021, 4(6): 2013-2026.
[36] [36] YOON C, CHOI M J, JUN D W, et al. Cation ordering of Zr-doped LiNiO2 cathode for lithium-ion batteries[J]. Chem Mater, 2018, 30(5): 1808-1814.
[37] [37] RYU H H, PARK G T, YOON C S, et al. Suppressing detrimental phase transitions via tungsten doping of LiNiO2 cathode for next-generation lithium-ion batteries[J]. J Mater Chem A, 2019, 7(31): 18580-18588.
[38] [38] GENG C X, RATHORE D, HEINO D, et al. Mechanism of action of the tungsten dopant in LiNiO2 positive electrode materials[J]. Adv Energy Mater, 2022, 12(6): 2103067.
[39] [39] PARK G T, NAMKOONG B, KIM S B, et al. Introducing high-valence elements into cobalt-free layered cathodes for practical lithium-ion batteries[J]. Nat Energy, 2022, 7(10): 946-954.
[40] [40] YI M, DOLOCAN A, MANTHIRAM A. Stabilizing the interphase in cobalt-free, ultrahigh-nickel cathodes for lithium-ion batteries[J]. Adv Funct Mater, 2023, 33(14): 2213164.
[41] [41] CUI Z H, XIE Q, MANTHIRAM A. A cobalt- and Manganese-free high-nickel layered oxide cathode for long-life, safer lithium-ion batteries[J]. Adv Energy Mater, 2021, 11(41): 2102421.
[42] [42] ZHANG R, WANG C Y, ZOU P C, et al. Compositionally complex doping for zero-strain zero-cobalt layered cathodes[J]. Nature, 2022, 610(7930): 67-73.
[43] [43] YOON C S, KIM U H, PARK G T, et al. Self-passivation of a LiNiO2 cathode for a lithium-ion battery through Zr doping[J]. ACS Energy Lett, 2018, 3(7): 1634-1639.
[44] [44] KIM J M, XU Y B, ENGELHARD M H, et al. Facile dual-protection layer and advanced electrolyte enhancing performances of cobalt-free/nickel-rich cathodes in lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2022, 14(15): 17405-17414.
[45] [45] ZHANG N, ZAKER N, LI H Y, et al. Cobalt-free nickel-rich positive electrode materials with a core-shell structure[J]. Chem Mater, 2019, 31(24): 10150-10160.
[46] [46] LIU Y L, WU H H, LI K, et al. Cobalt-free core-shell structure with high specific capacity and long cycle life as an alternative to Li[Ni0.8Mn0.1Co0.1]O2[J]. J Electrochem Soc, 2020, 167(12): 120533.
[47] [47] DENG T, FAN X L, CAO L S, et al. Designing In-situ-formed interphases enables highly reversible cobalt-free LiNiO2 cathode for Li-ion and Li-metal batteries[J]. Joule, 2019, 3(10): 2550-2564.
[48] [48] OBER S, MESNIER A, MANTHIRAM A. Surface stabilization of cobalt-free LiNiO2 with niobium for lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2023, 15(1): 1442-1451.
[49] [49] SEONG W M, MANTHIRAM A. Complementary effects of Mg and Cu incorporation in stabilizing the cobalt-free LiNiO2 cathode for lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2020, 12(39): 43653-43664.
[50] [50] FAN X M, HU G R, ZHANG B, et al. Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries[J]. Nano Energy, 2020, 70: 104450.
[51] [51] QIAN G N, ZHANG Y T, LI L S, et al. Single-crystal nickel-rich layered-oxide battery cathode materials: synthesis, electrochemistry, and intra-granular fracture[J]. Energy Storage Mater, 2020, 27: 140-149.
[52] [52] BI Y, TAO J, WU Y, et al. Reversible planar gliding and microcracking in a single-crystalline ni-rich cathode[J]. Science, 2020, 370(6522): 1313-1317.
[53] [53] KANEDA H, FURUICHI Y, IKEZAWA A, et al. Single-crystal-like durable LiNiO2 positive electrode materials for lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2022, 14(47): 52766-52778.
[54] [54] DAI P P, KONG X B, YANG H Y, et al. Single-crystal Ni-rich layered LiNi0.9Mn0.1O2 enables superior performance of Co-free cathodes for lithium-ion batteries[J]. ACS Sustainable Chem Eng, 2022, 10(14): 4381-4390.
[55] [55] XU X, HUO H, JIAN J Y, et al. Radially oriented single-crystal primary nanosheets enable ultrahigh rate and cycling properties of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries[J]. Adv Energy Mater, 2019, 9(15): 1803963.
[56] [56] ZHU C Q, CAO M Y, ZHANG H Y, et al. Synergistic effect of microstructure engineering and local crystal structure tuning to improve the cycling stability of Ni-rich cathodes[J]. ACS Appl Mater Interfaces, 2021, 13(41): 48720-48729.
[57] [57] LI W J, ZHANG J, ZHOU Y N, et al. Regulating the grain orientation and surface structure of primary particles through tungsten modification to comprehensively enhance the performance of nickel-rich cathode materials[J]. ACS Appl Mater Interfaces, 2020, 12(42): 47513-47525.
[58] [58] YANG W, LI H D, WANG D, et al. Ta induced fine tuning of microstructure and interface enabling Ni-rich cathode with unexpected cyclability in pouch-type full cell[J]. Nano Energy, 2022, 104: 107880.
Get Citation
Copy Citation Text
SONG Chenxi, SHEN Yang. Challenges and Strategies for Low Cost Cobalt-Free High-Nickel Cathode Materials[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2214
Category:
Received: Apr. 19, 2023
Accepted: --
Published Online: Oct. 7, 2023
The Author Email: SONG Chenxi (scx20@mails.tsinghua.edu.cn)
CSTR:32186.14.