Chinese Journal of Lasers, Volume. 39, Issue 1, 105003(2012)
Theoretical Studies on Mid-Infrared Gain Characteristics of Erbium-Doped Chalcogenide Glass Fibers
[1] [1] M. El-Amraoui, G. Gadret, J. C. Jules et al.. Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources[J]. Opt. Express, 2010, 18(25): 26655~26665
[3] [3] V. Moizan, V. Nazabal, J. Troles et al.. Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy[J]. Opt. Mater., 2008, 30(1): 39~46
[4] [4] L. Brilland, F. Charpentier, J. Troles et al.. Microstructured chalcogenide fibers for biological and chemical detection: Case study: A CO2 sensor[C]. SPIE, 2009, 7503: 581~584
[5] [5] F. Prudenzano, L. Mescia, L. Allegretti et al.. Simulation of mid-IR amplification in Er3+-doped chalcogenide microstructured optical fiber[J]. Opt. Mater., 2009, 31(9): 1292~1295
[6] [6] N. J. Traynor, A. Monteville, L. Provino et al.. Fabrication and applications of low loss nonlinear holey fibers[J]. Fiber and Integrated Optics, 2009, 28(1): 51~59
[7] [7] Dai Shixun, Yu Xingyan, Zhang Wei et al.. Research progress of chalcogenide glass photonic crystal fibers[J]. Laser & Optoelectronics Progress, 2011, 48(9): 090602
[8] [8] B. R. Judd. Optical absorption intensities of rare-earth ions[J]. Phys. Rev., 1962, 127(3): 750~761
[9] [9] G. S. Ofelt. Intensities of crystal spectra of rare-earth ions[J]. Chem. Phys., 1962, 37(3): 511~520
[10] [10] Chen Fen, Zhou Lin, Zhou Yaxun et al.. Gain characteristics of a erbium-doped tellurite glass fiber applied for broadband amplification[J]. Chinese J. Quantum Electronics, 2007, 24(2): 241~247
[11] [11] Zhou Yaxun, Wang Jun, Chen Fen. Broadband amplifying characteristics of a bismuth-based erbium-doped fiber amplifier[J]. Optical Technique, 2008, 34(1): 41~47
[14] [14] D. E. McCumber. Theory of phonon-terminated optical masers[J]. Phys. Rev., 1964, 134(2A): A199~A306
[15] [15] C. C. Ye, D. W. Hewak, M. Hempstead et al.. Spectra properties of Er3+-doped gallium lanthanum sulphide glass[J]. J. Non-Cryst. Solids, 1996, 208(1-2): 56~63
[16] [16] Y. G. Choi, K. H. Kim, B. J. Lee et al.. Emission properties of the Er3+4I11/2→4I13/2 transition in Er3+- and Er3+/Tm3+-doped Ge-Ga-As-S glasses[J]. J. Non-Cryst. Solids, 2000, 278(1-3): 137~144
[17] [17] V. K. Tikhomirov, J. Méndez-Ramos, V. D. Rodríguez et al.. Laser and gain parameters at 2.7 μm of Er3+-doped oxyfluoride transparent glass-ceramics[J]. Opt. Mater., 2006, 28(10): 1143~1146
[18] [18] S. D. Jackson, T. A. King, M. Pollnau. Modelling of high-power diode-pumped erbium 3 μm fibre lasers[J]. J. Mod. Opt., 2000, 47(11): 1987~1994
[19] [19] Y. Tian, R. R. Xu, L. Y. Zhang. Observation of 2.7 μm emission from diode-pumped Er3+/Pr3+-codoped fluorophosphate glass[J]. Opt. Lett., 2011, 36(2): 109~111
[20] [20] M. Sario De, L. Mescia, F. Prudenzano et al.. Feasibility of Er3+-doped, Ga5Ge20Sb10S65 chalcogenide microstructured optical fiber amplifiers[J]. Optics & Laser Technology, 2009, 41(1): 99~106
[21] [21] K. Kadono, T. Yazawa, S. Jiang et al.. Rate equation analysis and energy transfer of Er3+-doped Ga2S3-GeS2-La2S3 glasses[J]. J. Non-Cryst. Solids, 2003, 331(1-3): 79~90
[22] [22] V. Moizan, V. Nazabal, J. Troles et al.. Mid-infrared fiber laser application: Er3+-doped chalcogenide glasses[C]. SPIE, 2007, 6469: 64690E
Get Citation
Copy Citation Text
Yu Xingyan, Dai Shixun, Zhou Yaxun, Wang Xunsi, Zhang Peiqing, Liu Yongxing, Xu Tiefeng, Nie Qiuhua. Theoretical Studies on Mid-Infrared Gain Characteristics of Erbium-Doped Chalcogenide Glass Fibers[J]. Chinese Journal of Lasers, 2012, 39(1): 105003
Category: Optical communication
Received: Jul. 26, 2011
Accepted: --
Published Online: Dec. 22, 2011
The Author Email: Xingyan Yu (yxyxmf2005@126.com)