Geological Journal of China Universities, Volume. 31, Issue 3, 286(2025)
Petrography and Mineralogy of Lunar Magnesian Anorthositic Meteorite Northwest Africa 8599
[1] [1] Bersch M G, Taylor G J, Keil K, et al. 1991. Mineral compositions in pristine lunar highland rocks and the diversity of highland magmatism[J]. Geophysical Research Letters, 18: 2085-2088.
[2] [2] Borg L E, Gaffney A M, Shearer C K, et al. 2009. Mechanisms for incompatible-element enrichment on the Moon deduced from the lunar basaltic meteorite Northwest Africa 032[J]. Geochimica et Cosmochimica Acta, 73: 3963-3980.
[3] [3] Boukar C E, Parmentier E M and Parman S W. 2018. Timing of mantle overturn during magma ocean solidification[J]. Earth and Planetary Science Letters, 491: 216-225.
[4] [4] Brett R, Gooley R C, Dowty E, et al. 1973. Oxide minerals in lithic fragments from Luna 20 fines[J]. Geochimica et Cosmochimica Acta, 37(4): 761-773.
[5] [5] Brey G P and Khler T P. 1990. Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers[J]. Journal of Petrology, 31(6): 1353-1378.
[6] [6] Charlier B, Grove T L, Namur O, et al. 2018. Crystallization of the lunar magma ocean and the primordial mantle-crust differentiation of the Moon[J]. Geochimica et Cosmochimica Acta, 234(1): 50-69.
[7] [7] Che X C, Nemchin A, Liu D Y, et al. 2021. Age and composition of young basalts on the Moon, measured from samples returned by Chang’e-5[J]. Science, 374: 887-890.
[8] [8] Dymek R F, Albee A L and Chodos A A. 1975. Comparative petrology of lunar cumulate rocks of possible primary origin: Dunite 72415, troctolite 76535, norite 78235, and anorthosite 62237[J]. Lunar and Planetary Science Conference, 301-341.
[9] [9] Elardo S M, Draper D S and Shearer C K. 2011. Lunar Magma Ocean crystallization revisited: Bulk composition, early cumulate mineralogy, and the source regions of the highlands Mg-suite[J]. Geochimica et Cosmochimica Acta, 75(11): 3024-3045.
[10] [10] Elardo S M, McCubbin F M and Shearer C K. 2012. Chromite symplectites in Mg-suite troctolite 76535 as evidence for infiltration metasomatism of a lunar layered intrusion[J]. Geochimica et Cosmochimica Acta, 87: 154-177.
[11] [11] Elardo S M, Pieters C M, Dhingra D, et al. 2023. The Evolution of the Lunar Crust[M]. Reviews in Mineralogy and Geochemistry, 89: 293-338.
[12] [12] Elkins-Tanton L T, Burgess S and Yin Q Z. 2011. The lunar magma ocean: Reconciling the solidification process with lunar petrology and geochronology[J]. Earth and Planetary Science Letters, 304(3-4): 326-336.
[13] [13] Emslie R F, Hamilton M A and Thriault R J. 1994. Petrogenesis of a mid-proterozoic anorthosite-mangerite-charnockite-Granite (AMCG) complex: isotopic and chemical evidence from the nain plutonic suite[J]. The Journal of Geology, 102(5): 539-558.
[14] [14] Fagan A L and Neal C R. 2016. A new lunar high-Ti basalt type defined from clasts in Apollo 16 breccia 60639[J]. Geochimica et Cosmochimica Acta, 173: 352-372.
[15] [15] Fagan A L, Neal C R, Simonetti A, et al. 2013. Distinguishing between Apollo 14 impact melt and pristine mare basalt samples by geochemical and textural analyses of olivine[J]. Geochimica et Cosmochimica Acta, 106: 429-445.
[16] [16] Fagan T J, Taylor G J, Keil K, et al. 2002. Northwest Africa 032: Product of lunar volcanism[J]. Meteoritics & Planetary Science, 37(3): 371-394.
[17] [17] Fu X H, Cao H J, Chen J, et al. 2021. Petrology and geochemistry of lunar feldspathic meteorite Northwest Africa 11111: Insights into the lithology of the lunar farside highlands[J]. Meteoritics & Planetary Science, 56: 1829-1856.
[18] [18] Gooley R, Brett R, Warner J and Smyth J R. 1974. A lunar rock of deep crustal origin: Sample 76535[J]. Geochimica et Cosmochimica Acta, 38(9): 1329-1339.
[19] [19] Gross J, Hilton A, Prissel T C, et al. 2020. Geochemistry and petrogenesis of Northwest Africa 10401: A new type of the Mg-suite rocks[J]. Journal of Geophysical Research: Planets, 125: e2019JE006225.
[20] [20] Gross J, Treiman A H and Mercer C N. 2014. Lunar feldspathic meteorites: Constraints on the geology of the lunar highlands, and the origin of the lunar crust[J]. Earth and Planetary Science Letters, 388: 318-328.
[21] [21] Heiken G H, Vaniman D T and French B M. 1991. Lunar Sourcebook—A User’s Guide to the Moon[M]. Cambridge Univ. Press, Cambridge, U. K.
[22] [22] Hess P C and Parmentier E M. 1995. A model for the thermal and chemical evolution of the Moon’s interior: implications for the onset of mare volcanism[J]. Earth and Planetary Science Letters, 134: 501-514.
[23] [23] James O B and Flohr M K. 1983. Subdivision of the Mg-suite noritic rocks into Mg-gabbronorites and Mg-norites[J]. Journal of Geophysical Research: Solid Earth, 88: A603-A614.
[24] [24] Jolliff B L, Gillis J J, Haskin L A, et al. 2000. Major lunar crustal terranes: Surface expressions and crust-mantle origins[J]. Journal of Geophysical Research: Planets, 105: 4197-4216.
[25] [25] Jolliff B L, Wieczorek M A, Shearer C A, et al. 2006. New Views of the Moon[M]. Reviews in Mineralogy and Geochemistry, 60: 221-364.
[26] [26] Joy K H, Gross J, Korotev R L, et al. 2023. Lunar Meteorites[M]. Reviews in Mineralogy and Geochemistry, 89: 509-562.
[27] [27] Joy K H, Nemchin A, Grange M, et al. 2014. Petrography, geochronology and source terrain characteristics of lunar meteorites Dhofar 925, 961 and Sayh al Uhaymir 449[J]. Geochimica et Cosmochimica Acta, 144: 299-325.
[28] [28] Kent J J, Brandon A D, Joy K H, et al. 2017. Mineralogy and petrogenesis of lunar magnesian granulitic meteorite Northwest Africa 5744[J]. Meteoritics & Planetary Science, 52: 1916-1940.
[29] [29] Khler T P and Brey G P. 1990. Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications[J]. Geochimica et Cosmochimica Acta, 54(9): 2375-2388.
[30] [30] Korotev R L. 2005. Lunar geochemistry as told by lunar meteorites[J]. Chemie der Erde-Geochemistry, 65: 297-346.
[31] [31] Laneuville M, Wieczorek M A, Breuer D, et al. 2013. Asymmetric thermal evolution of the Moon[J]. Journal of Geophysical Research: Planets, 118: 1435-1452.
[32] [32] Li H Y, Zhang N, Liang Y, et al. 2019. Lunar cumulate mantle overturn: A model constrained by ilmenite rheology[J]. Journal of Geophysical Research: Planets, 124(5): 1357-1378.
[33] [33] Li Q L, Zhou Q, Liu Y, et al. 2021. Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts[J]. Nature, 600: 54-58.
[34] [34] Lindstrom M M, Knapp S A, Shervais J W, et al. 1984. Magnesian anorthosites and associated troctolites and dunite in Apollo 14 breccias[J]. Journal of Geophysical Reserch: Solid Earth, 89(S01): C41-C49.
[35] [35] Lindstrom M M, Marvin U B and Mittlefehldt D W. 1989. Apollo 15 Mg-and Fe-norites-A redefinition of the Mg-suite differentiation trend[C]. Lunar and Planetary Science Conference, 245-254.
[36] [36] Luo B J, Wang Z C, Song J L, et al. 2023. The magmatic architecture and evolution of the Chang’e-5 lunar basalts[J]. Nature Geoscience, 16: 301-308.
[37] [37] McCallum I S and Schwartz J M. 2001. Lunar Mg suite: Thermobarometry and petrogenesis of parental magmas[J]. Journal of Geophysical Research: Planets, 106: 27969-27983.
[38] [38] Mercer C N, Treiman A H and Joy K H. 2013. New lunar meteorite Northwest Africa 2996: A window into farside lithologies and petrogenesis[J]. Meteoritics & Planetary Science, 48: 289-315.
[39] [39] Moriarty D P, Dygert N, Valencia S N, et al. 2021. The search for lunar mantle rocks exposed on the surface of the Moon[J]. Nature Communications, 12: 4659.
[40] [40] Morris R W, Taylor G J, Newsome H E, et al. 1990. Highly evolved and ultramafic lithologies from Apollo 14 soils[C]. Lunar and Planetary Science Conference, 61-75.
[41] [41] Neal C R, Gaddis L R, Joliff B L, et al. 2023. New Views of the Moon 2[M]. Reviews in Mineralogy and Geochemistry, 89: 243-292.
[42] [42] Nimis P. 1999. Clinopyroxene geobarometry of magmatic rocks. Part 2. Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems[J]. Contributions to Mineralogy and Petrology, 135: 62-74.
[43] [43] Papike J J, Hodges F N, Bence A E, et al. 1976. Mare basalts: Crystal chemistry, mineralogy, and petrology[J]. Review of Geophysics, 14: 475-540.
[44] [44] Papike J J, Ryder G and Shearer C K. 1998. Lunar Samples[M]. Reviews in Mineralogy and Geochemistry, 36(1): 5-01-5-234.
[45] [45] Pernet-Fisher J F, Deloule E and Joy K H. 2019. Evidence of chemical heterogeneity within lunar anorthosite parental magmas[J]. Geochimica et Cosmochimica Acta, 266: 109-130.
[46] [46] Putirka K D. 2008. Thermometers and barometers for volcanic systems[J]. Reviews in Mineralogy and Geochemistry, 69(1): 61-120.
[47] [47] Qin L, Wu X, Huang L, et al. 2022. Spectroscopic and petrographic investigations of Lunar Mg-suite meteorite Northwest Africa 8687[J]. Remote Sensing, 14: 2952.
[48] [48] Roberts S E, Mccanta M C, Jean M M, et al. 2019. New lunar meteorite NWA 10986: A mingled impact melt breccia from the highlands—A complete cross section of the lunar crust[J]. Meteoritics & Planetary Science, 54: 3018-3035.
[49] [49] Robie R A and Hemingway B S. 1995. Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (10^5 pascals) Pressure and at Higher Temperatures[M]. Geological Survey, Information Services, Bulletin USGS Numbered Series 2131.
[50] [50] Ruzicka A, Grossman J, Bouvier A, et al. 2017. The Meteoritical Bulletin, No. 103[J]. Meteoritics & Planetary Science, 52: 1014-1014.
[51] [51] Ryder G. 1992. Chemical variation and zoning of olivine in lunar dunite 72415: Near-surface accumulation[C]. Lunar and Planetary Science Conference, 373-380.
[52] [52] Shearer C K and Papike J J. 2005. Early crustal building processes on the moon: Models for the petrogenesis of the magnesian suite[J]. Geochimica et Cosmochimica Acta, 69: 3445-3461.
[53] [53] Shearer C K, Burger P V, Bell A S, et al. 2015. Exploring the Moon’s surface for remnants of the lunar mantle 1. Dunite xenoliths in mare basalts. A crustal or mantle origin[J]. Meteoritics & Planetary Science, 50: 1449-1467.
[54] [54] Shearer C K, Elardo S M, Petro N E, et al. 2015. Origin of the lunar highlands Mg-suite: An integrated petrology, geochemistry, chronology, and remote sensing perspective[J]. American Mineralogist, 100: 294-325.
[55] [55] Shearer C K, Hess P C, Wieczorek M A, et al. 2006. Thermal and magmatic evolution of the Moon[J]. Reviews in Mineralogy and Geochemistry, 60: 365-518.
[56] [56] Shervais J W and McGee J J. 1998. Ion and electron microprobe study of troctolites, norite, and anorthosites from Apollo 14: Evidence for urKREEP assimilation during petrogenesis of Apollo 14 Mg-suite rocks[J]. Geochimica et Cosmochimica Acta, 62: 3009-3023.
[57] [57] Simkin T and Smith J V. 1970. Minor-element distribution in olivine[J]. The Journal of Geology, 78: 304-325.
[58] [58] Simon S B, Shearer C K, Haggerty S E, et al. 2022. Multiple shallow crustal origins for spinel-bearing lithologies on the Moon: A perspective from the Luna 20 mission[J]. Journal of Geophysical Research: Planets, 127: e2022JE007249.
[59] [59] Sio C K, Borg L E and Cassata W S. 2020. The timing of lunar solidification and mantle overturn recorded in ferroan anorthosite 62237[J]. Earth and Planetary Science Letters, 538: 116219.
[60] [60] Snape J F, Joy K H and Crawford I A. 2011. Characterization of multiple lithologies within the lunar feldspathic regolith breccia meteorite Northeast Africa 001[J]. Meteoritics & Planetary Science, 46: 1288-1312.
[61] [61] Stadermann A C, Barnes J J, Erickson T M, et al. 2023. Evidence for extrusive Mg-suite magmatism on the Moon? Fine-grained magnesian clasts in an Apollo 16 impact melt breccia[J]. Journal of Geophysical Research: Planets, 128: e2022JE007728.
[62] [62] Stephant A, Anand M, Ashcroft H O, et al. 2019. An ancient reservoir of volatiles in the Moon sampled by lunar meteorite Northwest Africa 10989[J]. Geochimica et Cosmochimica Acta, 266: 163-183.
[63] [63] Su B, Yuan J Y, Chen Y, et al. 2022. Fusible mantle cumulates trigger young mare volcanism on the Cooling Moon[J]. Science Advances, 8: eabn2103.
[64] [64] Takeda H, Yamaguchi A, Bogard D D, et al. 2006. Magnesian anorthosites and a deep crustal rock from the farside crust of the Moon[J]. Earth and Planetary Science Letters, 247: 171-184.
[65] [65] Taylor S R. 1982. The Chemical Compositions of the Planets[M]. Planetary Science: A Lunar Perspective: 375-405.
[66] [66] Tokle L, Hirth G, Liang Y, et al. 2021. The effect of pressure and Mg-content on ilmenite rheology: Implications for lunar cumulate mantle overturn[J]. Journal of Geophysical Research: Planets, 126: e2020JE006494.
[67] [67] Tomlinson E L, Kamber B S, Hoare B C, et al. 2018. An exsolution origin for Archean mantle garnet[J]. Geology, 46: 123-126.
[68] [68] Treiman A H and Gross J. 2015. A rock fragment related to the magnesian suite in lunar meteorite Allan Hills (ALHA) 81005[J]. American Mineralogist, 100: 414-426.
[69] [69] Treiman A H and Semprich J. 2023. A dunite fragment in meteorite Northwest Africa (NWA) 11421: A piece of the Moon’s mantle[J]. American Mineralogist, 108(12): 2182-2192.
[70] [70] Treiman A H, Maloy A K, Shearer C K, et al. 2010. Magnesian anorthositic granulites in lunar meteorites Allan Hills A81005 and Dhofar 309: Geochemistry and global significance[J]. Meteoritics & Planetary Science, 45(2): 163-180.
[71] [71] Warren P H, Taylor G J, Keil K, et al. 1983. Sixth foray for pristine non-mare rocks and an assessment of the diversity of lunar anorthosites[J]. Journal of Geophysical Research: Solid Earth, 88: A615-A630.
[72] [72] Wasson J T and Warren P H. 1980. Contribution of the mantle to the lunar asymmetry[J]. Icarus, 44: 752-771.
[73] [73] Wood J A, Dickey J S Jr, Marvin U B, et al. 1970. Lunar Anorthosites[J]. Science, 167: 602.
[74] [74] Xu X Q, Hui H J, Chen W, et al. 2020. Formation of lunar highlands anorthosites[J]. Earth and Planetary Science Letters, 536: 116138.
[75] [75] Xue Z Q, Xiao X L, Neal C R, et al. 2019. Oldest high-Ti basalt and magnesian crustal materials in feldspathic lunar meteorite Dhofar 1428[J]. Geochimica et Cosmochimica Acta, 266: 74-108.
[76] [76] Zeng X J, Joy K H, Li S J, et al. 2018a. Multiple lithic clasts in lunar breccia Northwest Africa 7948 and implication for the lithologic components of lunar crust[J]. Meteoritics & Planetary Science, 53: 1030-1050.
[77] [77] Zeng X J, Li S J, Joy K H, et al. 2020. Occurrence and implications of secondary olivine veinlets in lunar highland breccia Northwest Africa 11273[J]. Meteoritics & Planetary Science, 55: 36-55.
[78] [78] Zhao Y, de Vries J, van den Berg A P, et al. 2019. The participation of ilmenite-bearing cumulates in lunar mantle overturn[J]. Earth and Planetary Science Letters, 511: 1-11.
[79] [79] Zhou Q, Zhang G L, Zhu X Y, et al. 2019. Petrography and Mineralogy of Northwest Africa 8687[C]//Lunar and Planetary Science Conference, 50: 2372.
Get Citation
Copy Citation Text
ZHANG Zhenguang, ZHANG Lang, DU Tianran, ZHAO Kai, ZHANG Aicheng. Petrography and Mineralogy of Lunar Magnesian Anorthositic Meteorite Northwest Africa 8599[J]. Geological Journal of China Universities, 2025, 31(3): 286
Received: Jun. 17, 2024
Accepted: Aug. 21, 2025
Published Online: Aug. 21, 2025
The Author Email: ZHANG Aicheng (aczhang@nju.edu.cn)