International Journal of Extreme Manufacturing, Volume. 7, Issue 4, 45504(2025)
Designing electrolyte with multi-ether solvation structure enabling low-temperature sodium ion capacitor
[1] [1] Bonaccorso F, Colombo L, Yu G H, Stoller M, Tozzini V, Ferrari A C, Ruoff R S and Pellegrini V. 2015. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage.Science347, 1246501.
[2] [2] Xu Z and Wang J. 2022. Toward emerging sodium-based energy storage technologies: from performance to sustainability.Adv. Energy Mater.12, 2201692.
[3] [3] Pei M F, Liu D M, Jin X, Li B R, Jiang W Y, Song Z H, Jian X G and Hu F Y. 2024. Na2Sin-situinfiltrated in actived carbon as high-efficiency presodiation additives for sodium ion hybrid capacitors.Carbon Neutral.3, 461–470.
[4] [4] Liu S Y, Cheng H T, Mao R Y, Jiang W Y, Wang L, Song Z H, Pei M F, Zhang T P and Hu F Y. 2023. Designing zwitterionic gel polymer electrolytes with dual-ion solvation regulation enabling stable sodium ion capacitor.Adv. Energy Mater.13, 2300068.
[5] [5] Zhao Y H, Li N, Xie K Y, Wang C, Zhou S S, Zhang X G and Ye C. 2025. Manufacturing of lithium battery toward deepsea environment.Int. J. Extrem. Manuf.7, 022009.
[6] [6] Wang F, Jiang Z M, Zhang Y Y, Zhang Y L, Li J D, Wang H B, Jiang Y Z, Xing G C, Liu H C and Tang Y X. 2024. Revitalizing sodium-ion batteries via controllable microstructures and advanced electrolytes for hard carbon.eScience4, 100181.
[7] [7] Larcher D and Tarascon J M. 2015. Towards greener and more sustainable batteries for electrical energy storage.Nat. Chem.7, 19–29.
[8] [8] Liu S Y, Hu F Y, Shao W L, Zhang W S, Zhang T P, Song C, Yao M, Huang H and Jian X G. 2020. A novel strategy ofin situtrimerization of cyano groups between the Ti3C2Tx(MXene) interlayers for high-energy and highpower sodium-ion capacitors.Nano-Micro Lett.12, 135.
[9] [9] Yang B J, Chen J T, Lei S L, Guo R S, Li H X, Shi S Q and Yan X B. 2018. Spontaneous growth of 3D framework carbon from sodium citrate for high energy-and power-density and long-life sodium-ion hybrid capacitors.Adv. Energy Mater.8, 1702409.
[10] [10] Ding J, Hu W B, Paek E and Mitlin D. 2018. Review of hybrid ion capacitors: from aqueous to lithium to sodium.Chem. Rev.118, 6457–6498.
[11] [11] Lu Z Y, Yang H J, Guo Y, Lin H X, Shan P Z, Wu S C, He P, Yang Y, Yang Q H and Zhou H S. 2024. Consummating ion desolvation in hard carbon anodes for reversible sodium storage.Nat. Commun.15, 3497.
[12] [12] Liu M Q, Wang Y H, Wu F, Bai Y, Li Y, Gong Y T, Feng X, Li Y, Wang X R and Wu C. 2022. Advances in carbon materials for sodium and potassium storage.Adv. Funct. Mater.32, 2203117.
[13] [13] Chen J W, Peng Y, Yin Y, Fang Z, Cao Y J, Wang Y G, Dong X L and Xia Y Y. 2021. A desolvation-free sodium dual-ion chemistry for high power density and extremely low temperature.Angew. Chem., Int. Ed.60, 23858–23862.
[14] [14] Wu Z X, Huang Z D, Zhang R, Hou Y and Zhi C Y. 2024. Aqueous electrolyte additives for zinc-ion batteries.Int. J. Extrem. Manuf.6, 062002.
[15] [15] Gupta A and Manthiram A. 2020. Designing advanced lithium-based batteries for low-temperature conditions.Adv. Energy Mater.10, 2001972.
[16] [16] Wang S Z, Zhang X G, Gu Y, Tang S and Fu Y Z. 2024. An ultrastable low-temperature Na metal battery enabled by synergy between weakly solvating solvents.J. Am. Chem. Soc.146, 3854–3860.
[17] [17] Zheng X Y, Huang L Q, Ye X L, Zhang J X, Min F Y, Luo W and Huang Y H. 2021. Critical effects of electrolyte recipes for Li and Na metal batteries.Chem7, 2312–2346.
[18] [18] Zhong S E et al. 2023. Molecular engineering on solvation structure of carbonate electrolyte toward durable sodium metal battery at −40 °C.Angew. Chem., Int. Ed.135, e202301169.
[19] [19] Wang C L, Thenuwara A C, Luo J M, Shetty P P, McDowell M T, Zhu H Y, Posada-Prez S, Xiong H, Hautier G and Li W Y. 2022. Extending the low-temperature operation of sodium metal batteries combining linear and cyclic ether-based electrolyte solutions.Nat. Commun.13, 4934.
[20] [20] Fang H Y, Huang Y H, Hu W, Song Z H, Wei X S, Geng J R, Jiang Z L, Qu H, Chen J and Li F J. 2024. Regulating iondipole interactions in weakly solvating electrolyte towards ultra-low temperature sodium-ion batteries.Angew. Chem., Int. Ed.63, e202400539.
[21] [21] Xia Y, Yu F D, Nie D, Jiang Y S, Sun M Y, Que L F, Deng L, Zhao L, Zhang Q Y and Wang Z B. 2024. Unlocking fast potassium ion kinetics: high-rate and long-life potassium dual-ion battery for operation at −60 °C.Angew. Chem., Int. Ed.63, e202406765.
[22] [22] Zhou J et al. 2022. Low-temperature and high-rate sodium metal batteries enabled by electrolyte chemistry.Energy Storage Mater.50, 47–54.
[23] [23] Yu D D et al. 2024. Low-temperature and fast-charge sodium metal batteries.Small20, 2311810.
[24] [24] He J R, Bhargav A, Su L S, Lamb J, Okasinski J, Shin W and Manthiram A. 2024. Tuning the solvation structure with salts for stable sodium-metal batteries.Nat. Energy9, 446–456.
[25] [25] Wang S Y et al. 2023. Unraveling the solvent effect on solid-electrolyte interphase formation for sodium metal batteries.Angew. Chem., Int. Ed.135, e202313447.
[26] [26] Holoubek J et al. 2021. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature.Nat. Energy.6, 303–313.
[27] [27] Li Y, Wu F, Li Y, Liu M Q, Feng X, Bai Y and Wu C. 2022. Ether-based electrolytes for sodium ion batteries.Chem. Soc Rev.51, 4484–4536.
[28] [28] Zeng H P et al. 2024. Beyond LiF: tailoring Li2O-dominated solid electrolyte interphase for stable lithium metal batteries.ACS Nano18, 1969–1981.
[29] [29] Huang W, Wang H S, Boyle D T, Li Y Z and Cui Y. 2020. Resolving nanoscopic and mesoscopic heterogeneity of fluorinated species in battery solid-electrolyte interphases by cryogenic electron microscopy.ACS Energy Lett.5, 1128–1135.
[30] [30] Hobold G M, Wang C Z, Steinberg K, Li Y Z and Gallant B M. 2024. High lithium oxide prevalence in the lithium solid-electrolyte interphase for high Coulombic efficiency.Nat. Energy9, 580–591.
[31] [31] Lowe J S and Siegel D J. 2020. Modeling the interface between lithium metal and its native oxide.ACS Appl. Mater. Interfaces12, 46015–46026.
[32] [32] Kim S C et al. 2023. High-entropy electrolytes for practical lithium metal batteries.Nat. Energy8, 814–826.
[33] [33] Hu Y S and Pan H L. 2022. Solvation structures in electrolyte and the interfacial chemistry for Na-Ion batteries.ACS Energy Lett.7, 4501–4503.
[34] [34] Cheng H R et al. 2022. Emerging era of electrolyte solvation structure and interfacial model in batteries.ACS Energy Lett.7, 490–513.
[35] [35] Liu S F et al. 2021. An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes.Angew. Chem., Int. Ed.60, 3661–3671.
[36] [36] Xu J J, Koverga V, Phan A, Li A M, Zhang N, Baek M, Jayawardana C, Lucht B L, Ngo A T and Wang C S. 2024. Revealing the anion–solvent interaction for ultralow temperature lithium metal batteries.Adv. Mater.36, 2306462.
[37] [37] Cai P, Zou K Y, Deng X L, Wang B W, Zheng M, Li L H, Hou H S, Zou G Q and Ji X B. 2021. Comprehensive Understanding of sodium-ion capacitors: definition, mechanisms, configurations, materials, key technologies, and future developments.Adv. Energy Mater.11, 2003804.
Get Citation
Copy Citation Text
Liu Dongming, Pei Mengfan, Jin Xin, Wang Lin, Jiang Wanyuan, Li Borui, Mao Runyue, Jian Xigao, Hu Fangyuan. Designing electrolyte with multi-ether solvation structure enabling low-temperature sodium ion capacitor[J]. International Journal of Extreme Manufacturing, 2025, 7(4): 45504
Category:
Received: Jul. 10, 2024
Accepted: Sep. 9, 2025
Published Online: Sep. 9, 2025
The Author Email: