Chinese Journal of Lasers, Volume. 50, Issue 18, 1813006(2023)

Advances in Multi-Dimensional Light Field Modulation Based on Liquid Crystal

Chen Zhu1, Zhenglong Shao1, Yingjie Zhou1, Jiaqi Ren1, Fan Fan1、*, and Dongliang Tang1,2、**
Author Affiliations
  • 1Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Physics & Electronics, Hunan University, Changsha 410082, Hunan, China
  • 2Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, China
  • show less
    References(115)

    [1] Brown G H. Structure, properties, and some applications of liquid crystals[J]. Journal of the Optical Society of America, 63, 1505-1514(1973).

    [2] Korenic E M. A millennium of liquid crystals[J]. Optics and Photonics News, 11, 16-22(2000).

    [3] Huang S J, Li Y, Zhou P C et al. Polymer network liquid crystal grating/Fresnel lens fabricated by holography[J]. Liquid Crystals, 44, 873-879(2017).

    [4] Caño-García M, Quintana X, Otón J M et al. Dynamic multilevel spiral phase plate generator[J]. Scientific Reports, 8, 15804(2018).

    [5] Li Y L, Li N N, Wang D et al. Tunable liquid crystal grating based holographic 3D display system with wide viewing angle and large size[J]. Light: Science & Applications, 11, 188(2022).

    [6] Gou F W, Peng F L, Ru Q T et al. Mid-wave infrared beam steering based on high-efficiency liquid crystal diffractive waveplates[J]. Optics Express, 25, 22404-22410(2017).

    [7] Stephen M J, Straley J P. Physics of liquid crystals[J]. Reviews of Modern Physics, 46, 617-704(1974).

    [8] Kogelnik H, Li T. Laser beams and resonators[J]. Applied Optics, 5, 1550-1567(1966).

    [9] Eringen A C. Electrodynamics of cholesteric liquid crystals[J]. Molecular Crystals and Liquid Crystals, 54, 21-43(1979).

    [10] Bonneville R. Symmetries of the electrodynamic interactions between chiral molecules[J]. Molecular Physics, 106, 2627-2642(2008).

    [11] Emelyanenko A V. Induction of new ferrielectric smectic phases in the electric field[J]. Ferroelectrics, 495, 129-142(2016).

    [12] Carlsson T. Macroscopic flow behaviour of smectic C and smectic C* liquid crystals[J]. Ferroelectrics, 212, 123-131(1998).

    [13] Lee S H, Lee S L, Kim H Y. Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching[J]. Applied Physics Letters, 73, 2881-2883(1998).

    [14] George A K. Optical anisotropy of nematic liquid crystals[J]. Physics and Chemistry of Liquids, 37, 65-71(1998).

    [15] Chen C Y, Hsieh C F, Lin Y F et al. Magnetically tunable room-temperature 2π liquid crystal terahertz phase shifter[J]. Optics Express, 12, 2625-2630(2004).

    [16] Varanytsia A, Weng L B, Lin T C et al. High-performance and low-cost aluminum zinc oxide and gallium zinc oxide electrodes for liquid crystal displays[J]. Journal of Display Technology, 12, 1033-1039(2016).

    [17] Rafayelyan M, Tkachenko G, Brasselet E. Reflective spin-orbit geometric phase from chiral anisotropic optical media[J]. Physical Review Letters, 116, 253902(2016).

    [18] Li Y, Liu Y J, Dai H T et al. Flexible cholesteric films with super-reflectivity and high stability based on a multi-layer helical structure[J]. Journal of Materials Chemistry C, 5, 10828-10833(2017).

    [19] Mitov M. Cholesteric liquid crystals with a broad light reflection band[J]. Advanced Materials, 24, 6260-6276(2012).

    [20] Lin J D, Lin H L, Lin H Y et al. Widely tunable photonic bandgap and lasing emission in enantiomorphic cholesteric liquid crystal templates[J]. Journal of Materials Chemistry C, 5, 3222-3228(2017).

    [21] Huang Y H, Zhou Y, Wu S T. Broadband circular polarizer using stacked chiral polymer films[J]. Optics Express, 15, 6414-6419(2007).

    [22] Lin T G, Zhou Y Q, Yuan Y D et al. Transflective spin-orbital angular momentum conversion device by three-dimensional multilayer liquid crystalline materials[J]. Optics Express, 26, 29244-29252(2018).

    [23] Rafayelyan M, Brasselet E. Spin-to-orbital angular momentum mapping of polychromatic light[J]. Physical Review Letters, 120, 213903(2018).

    [24] Wang L, Gutierrez-Cuevas K G, Bisoyi H K et al. NIR light-directing self-organized 3D photonic superstructures loaded with anisotropic plasmonic hybrid nanorods[J]. Chemical Communications, 51, 15039-15042(2015).

    [25] Ma L L, Hu W, Zheng Z G et al. Light-activated liquid crystalline hierarchical architecture toward photonics[J]. Advanced Optical Materials, 7, 1900393(2019).

    [26] Kim Y H, Yoon D K, Jeong H S et al. Smectic liquid crystal defects for self-assembling of building blocks and their lithographic applications[J]. Advanced Functional Materials, 21, 610-627(2011).

    [27] Elston S J. Optics and nonlinear optics of liquid crystals[J]. Journal of Modern Optics, 41, 1517-1518(1994).

    [28] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society of London A: Mathematical and Physical Sciences, 392, 45-57(1984).

    [29] Bliokh K Y, Gorodetski Y, Kleiner V et al. Coriolis effect in optics: unified geometric phase and spin-hall effect[J]. Physical Review Letters, 101, 030404(2008).

    [30] Pancharatnam S. Generalised theory of interference, and its applications[J]. Proceedings of the Indian Academy of Sciences, 45, 402-411(1957).

    [31] Mauguin C. Sur les cristaux liquides de M. Lehmann[J]. Bulletin De La Société Française De Minéralogie, 34, 71-117(1911).

    [32] Urbach W, Boix M, Guyon E. Alignment of nematics and smectics on evaporated films[J]. Applied Physics Letters, 25, 479-481(1974).

    [33] Ichimura K. Photoalignment of liquid-crystal systems[J]. Chemical Reviews, 100, 1847-1874(2000).

    [34] Hasegawa M, Taira Y. Nematic homogeneous photo alignment by polyimide exposure to linearly polarized UV[J]. Journal of Photopolymer Science and Technology, 8, 241-248(1995).

    [35] Palto S P, Yudin S G, Germain C et al. Photoinduced optical anisotropy in Langmuir blodgett films as a new method of creating bistable anchoring surfaces for liquid crystal orientation[J]. Journal De Physique II, 5, 133-142(1995).

    [36] De Sio L, Roberts D E, Liao Z et al. Digital polarization holography advancing geometrical phase optics[J]. Optics Express, 24, 18297-18306(2016).

    [37] Kim J, Li Y M, Miskiewicz M N et al. Fabrication of ideal geometric-phase holograms with arbitrary wavefronts[J]. Optica, 2, 958-964(2015).

    [38] Ji W, Lee C H, Chen P et al. Meta-q-plate for complex beam shaping[J]. Scientific Reports, 6, 25528(2016).

    [39] Lin T G, Xie J, Zhou Y J et al. Recent advances in photoalignment liquid crystal polarization gratings and their applications[J]. Crystals, 11, 900(2021).

    [40] Hu W, Srivastava A, Xu F et al. Liquid crystal gratings based on alternate TN and PA photoalignment[J]. Optics Express, 20, 5384-5391(2012).

    [41] Guo Y B, Jiang M, Peng C H et al. High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals[J]. Advanced Materials, 28, 2353-2358(2016).

    [42] Schadt M. Liquid crystal materials and liquid crystal displays[J]. Annual Review of Materials Science, 27, 305-379(1997).

    [43] Gray G W, Kelly S M. Liquid crystals for twisted nematic display devices[J]. Journal of Materials Chemistry, 9, 2037-2050(1999).

    [44] Gregory D A, Kirsch J C, Tam E C. Full complex modulation using liquid-crystal televisions[J]. Applied Optics, 31, 163-165(1992).

    [45] Kirsch J C, Gregory D A, Thie M W et al. Modulation characteristics of the Epson liquid crystal television[J]. Optical Engineering, 31, 963-970(1992).

    [46] Anderson J C. Thin-film transistors[J]. Electronics and Power, 15, 90-93(1969).

    [47] Huang Y G, Liao E, Chen R et al. Liquid-crystal-on-silicon for augmented reality displays[J]. Applied Sciences, 8, 2366(2018).

    [48] Liao Y P, Song Y Z, Shao X B[M]. Thin film transistor liquid crystal display, 80-85(2016).

    [49] Liang J Y, Kohn R N,, Becker M F et al. High-precision laser beam shaping using a binary-amplitude spatial light modulator[J]. Applied Optics, 49, 1323-1330(2010).

    [50] Dorrah A H, Zamboni-Rached M, Mojahedi M. Experimental demonstration of tunable refractometer based on orbital angular momentum of longitudinally structured light[J]. Light: Science & Applications, 7, 40(2018).

    [51] Hu D, Zheng J, Liao E L et al. Modulating both amplitude and phase in a single-spatial light modulator (SLM)[J]. Proceedings of SPIE, 12026, 1202608(2022).

    [52] Hellman B, Rodriguez J, Luo C et al. Angular and spatial light modulation by single digital micromirror device for beam and pattern steering[J]. Proceedings of SPIE, 11294, 112940C(2020).

    [53] Ross W E, Psaltis D, Anderson R H. Two-dimensional magneto-optic spatial light modulator for signal processing[J]. Optical Engineering, 22, 485-490(1983).

    [54] Forbes A, Dudley A, McLaren M. Creation and detection of optical modes with spatial light modulators[J]. Advances in Optics and Photonics, 8, 200-227(2016).

    [55] Nishchal N K, Joseph J, Singh K. Optical phase encryption by phase contrast using electrically addressed spatial light modulator[J]. Optics Communications, 217, 117-122(2003).

    [56] Yang L, El-Tamer A, Hinze U et al. Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator[J]. Optics and Lasers in Engineering, 70, 26-32(2015).

    [57] Granqvist C G, Azens A, Hjelm A et al. Recent advances in electrochromics for smart windows applications[J]. Solar Energy, 63, 199-216(1998).

    [58] Wang Y, Runnerstrom E L, Milliron D J. Switchable materials for smart windows[J]. Annual Review of Chemical and Biomolecular Engineering, 7, 283-304(2016).

    [59] Cupelli D, Pasquale Nicoletta F, Manfredi S et al. Self-adjusting smart windows based on polymer-dispersed liquid crystals[J]. Solar Energy Materials and Solar Cells, 93, 2008-2012(2009).

    [60] Wang L, Bisoyi H K, Zheng Z G et al. Stimuli-directed self-organized chiral superstructures for adaptive windows enabled by mesogen-functionalized graphene[J]. Materials Today, 20, 230-237(2017).

    [61] Hu X W, Zhang X M, Yang W M et al. Stable and scalable smart window based on polymer stabilized liquid crystals[J]. Journal of Applied Polymer Science, 137, 48917(2020).

    [62] Konforti N, Marom E, Wu S T. Phase-only modulation with twisted nematic liquid-crystal spatial light modulators[J]. Optics Letters, 13, 251-253(1988).

    [63] Li S Q, Xu X W, Veetil R M et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface[J]. Science, 364, 1087-1090(2019).

    [64] Zuo Y, Zhao Y J, Chen Y C et al. Scalability of all-optical neural networks based on spatial light modulators[J]. Physical Review Applied, 15, 054034(2021).

    [65] Li J X, Guan Z Q, Liu H C et al. Metasurface-assisted indirect-observation cryptographic system[J]. Laser & Photonics Reviews, 17, 2200342(2023).

    [66] Fang X Y, Ren H R, Gu M. Orbital angular momentum holography for high-security encryption[J]. Nature Photonics, 14, 102-108(2020).

    [67] Hou J F, Situ G H. Image encryption using spatial nonlinear optics[J]. eLight, 2, 1-10(2022).

    [68] Duan W, Chen P, Wei B Y et al. Fast-response and high-efficiency optical switch based on dual-frequency liquid crystal polarization grating[J]. Optical Materials Express, 6, 597-602(2016).

    [69] Lin Y H, Wang Y J, Reshetnyak V. Liquid crystal lenses with tunable focal length[J]. Liquid Crystals Reviews, 5, 111-143(2017).

    [70] Zhou Y J, Yuan Y D, Zeng T B et al. Liquid crystal bifocal lens with adjustable intensities through polarization controls[J]. Optics Letters, 45, 5716-5719(2020).

    [71] Kobashi J, Yoshida H, Ozaki M. Planar optics with patterned chiral liquid crystals[J]. Nature Photonics, 10, 389-392(2016).

    [72] Chen P, Ma L L, Hu W et al. Chirality invertible superstructure mediated active planar optics[J]. Nature Communications, 10, 2518(2019).

    [73] Li C X, Yang X F, Han J L et al. Signal transmission encryption based on dye-doped chiral liquid crystals via tunable and efficient circularly polarized luminescence[J]. Materials Advances, 2, 3851-3855(2021).

    [74] Huang X J, Zhu D, Zhou Z et al. Tiger Amulet inspired high-security holographic encryption via liquid crystals[J]. Nanophotonics, 12, 1787-1795(2023).

    [75] Chen K X, Xu C T, Zhou Z et al. Multifunctional liquid crystal device for grayscale pattern display and holography with tunable spectral-response[J]. Laser & Photonics Reviews, 16, 2100591(2022).

    [76] Tang D L, Shao Z L, Xie X et al. Flat multifunctional liquid crystal elements through multi-dimensional information multiplexing[J]. Opto-Electronic Advances, 6, 220063(2023).

    [77] Lu X J, Li X Y, Guo Y H et al. Broadband high-efficiency polymerized liquid crystal metasurfaces with spin-multiplexed functionalities in the visible[J]. Photonics Research, 10, 1380-1393(2022).

    [78] Lei Y S, Zhang Q, Guo Y et al. Snapshot multi-dimensional computational imaging through a liquid crystal diffuser[J]. Photonics Research, 11, B111-B1114(2023).

    [79] Tang D L, Shao Z L, Zhou Y J et al. Simultaneous surface display and holography enabled by flat liquid crystal elements[J]. Laser & Photonics Reviews, 16, 2100491(2022).

    [80] Xie X, Du W J, Shao Z L et al. Multichannel binary-image and holographic display based on planar liquid crystal devices[J]. Laser & Photonics Reviews, 2300193(2023).

    [81] Luo X G. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & Astronomy, 58, 594201(2015).

    [82] Yue Z, Li J T, Li J E et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion[J]. Opto-Electronic Science, 1, 210014(2022).

    [83] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [84] Huang L L, Chen X Z, Mühlenbernd H et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 4, 2808(2013).

    [85] Huang L L, Chen X Z, Mühlenbernd H et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters, 12, 5750-5755(2012).

    [86] Khorasaninejad M, Chen W T, Devlin R et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 352, 1190-1194(2016).

    [87] Wang S M, Wu P C, Su V C et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 8, 187(2017).

    [88] Huo P C, Zhang C, Zhu W Q et al. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging[J]. Nano Letters, 20, 2791-2798(2020).

    [89] Chen J W, Wang K, Long H A et al. Tungsten disulfide-gold nanohole hybrid metasurfaces for nonlinear metalenses in the visible region[J]. Nano Letters, 18, 1344-1350(2018).

    [90] Li K, Wang J W, Cai W F et al. Electrically switchable, polarization-sensitive encryption based on aluminum nanoaperture arrays integrated with polymer-dispersed liquid crystals[J]. Nano Letters, 21, 7183-7190(2021).

    [91] Zhu S Q, Xu Z T, Zhang H et al. Liquid crystal integrated metadevice for reconfigurable hologram displays and optical encryption[J]. Optics Express, 29, 9553-9564(2021).

    [92] Hu Y Q, Ou X N, Zeng T B et al. Electrically tunable multifunctional polarization-dependent metasurfaces integrated with liquid crystals in the visible region[J]. Nano Letters, 21, 4554-4562(2021).

    [93] Wang J W, Li K, He H L et al. Metasurface-enabled high-resolution liquid-crystal alignment for display and modulator applications[J]. Laser & Photonics Reviews, 16, 2100396(2022).

    [94] Mysliwiec J, Szukalska A, Szukalski A et al. Liquid crystal lasers: the last decade and the future[J]. Nanophotonics, 10, 2309-2346(2021).

    [95] Cho S, Yoshida H, Ozaki M. Emission direction-tunable liquid crystal laser[J]. Advanced Optical Materials, 8, 2000375(2020).

    [96] Wang L, Urbas A M, Li Q. Nature-inspired emerging chiral liquid crystal nanostructures: from molecular self-assembly to DNA mesophase and nanocolloids[J]. Advanced Materials, 32, 1801335(2020).

    [97] Muszyński M, Król M, Rechcińska K et al. Realizing persistent-spin-helix lasing in the regime of rashba-dresselhaus spin-orbit coupling in a dye-filled liquid-crystal optical microcavity[J]. Physical Review Applied, 17, 014041(2022).

    [98] Chen Y J, Zheng C L, Yang W J et al. Over 200 ℃ broad-temperature lasers reconstructed from a blue-phase polymer scaffold[J]. Advanced Materials, 34, 2206580(2022).

    [99] Allen L, Beijersbergen M W, Spreeuw R J C et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185-8189(1992).

    [100] Shen Y J, Wang X J, Xie Z W et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light: Science & Applications, 8, 90(2019).

    [101] Chen J, Wan C H, Zhan Q W. Engineering photonic angular momentum with structured light: a review[J]. Advanced Photonics, 3, 064001(2021).

    [102] Rosales-Guzmán C, Bhebhe N, Forbes A. Simultaneous generation of multiple vector beams on a single SLM[J]. Optics Express, 25, 25697-25706(2017).

    [103] Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 10, 937-943(2015).

    [104] Wang E L, Shi L N, Niu J B et al. Multichannel spatially nonhomogeneous focused vector vortex beams for quantum experiments[J]. Advanced Optical Materials, 7, 1801415(2019).

    [105] Zhang Y H, Chen P, Ge S J et al. Spin-controlled massive channels of hybrid-order Poincaré sphere beams[J]. Applied Physics Letters, 117, 081101(2020).

    [106] Xu C T, Chen P, Zhang Y H et al. Tunable band-pass optical vortex processor enabled by wash-out-refill chiral superstructures[J]. Applied Physics Letters, 118, 151102(2021).

    [107] Chen P, Ge S J, Duan W et al. Digitalized geometric phases for parallel optical spin and orbital angular momentum encoding[J]. ACS Photonics, 4, 1333-1338(2017).

    [108] Chen X, Korblova E, Dong D P et al. First-principles experimental demonstration of ferroelectricity in a thermotropic nematic liquid crystal: polar domains and striking electro-optics[J]. Proceedings of the National Academy of Sciences of the United States of America, 117, 14021-14031(2020).

    [109] Mertelj A, Cmok L, Sebastián N et al. Splay nematic phase[J]. Physical Review X, 8, 041025(2018).

    [110] Li J X, Nishikawa H, Kougo J et al. Development of ferroelectric nematic fluids with giant-ε dielectricity and nonlinear optical properties[J]. Science Advances, 7, eabf5047(2021).

    [111] Zhao X H, Zhou J C, Li J X et al. Spontaneous helielectric nematic liquid crystals: electric analog to helimagnets[J]. Proceedings of the National Academy of Sciences of the United States of America, 118, 1-9(2021).

    [112] Folcia C L, Ortega J, Vidal R et al. The ferroelectric nematic phase: an optimum liquid crystal candidate for nonlinear optics[J]. Liquid Crystals, 49, 899-906(2022).

    [113] Zhao X H, Long H Q, Xu H et al. Nontrivial phase matching in helielectric polarization helices: universal phase matching theory, validation, and electric switching[J]. Proceedings of the National Academy of Sciences of the United States of America, 119, 1-8(2022).

    [114] Liu S J, Chen P, Ge S J et al. 3D engineering of orbital angular momentum beams via liquid-crystal geometric phase[J]. Laser & Photonics Reviews, 16, 2200118(2022).

    [115] Hu H L, Liu B H, Li M Q et al. A quadri-dimensional manipulable laser with an intrinsic chiral photoswitch[J]. Advanced Materials, 34, 2110170(2022).

    Tools

    Get Citation

    Copy Citation Text

    Chen Zhu, Zhenglong Shao, Yingjie Zhou, Jiaqi Ren, Fan Fan, Dongliang Tang. Advances in Multi-Dimensional Light Field Modulation Based on Liquid Crystal[J]. Chinese Journal of Lasers, 2023, 50(18): 1813006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: micro and nano optics

    Received: Apr. 12, 2023

    Accepted: May. 26, 2023

    Published Online: Aug. 10, 2023

    The Author Email: Fan Fan (ffan@hnu.edu.cn), Dongliang Tang (dltang@hnu.edu.cn)

    DOI:10.3788/CJL230716

    Topics