Journal of Advanced Dielectrics, Volume. 15, Issue 2, 2450022(2025)
Effect of A/B sites co-doping on the structure, electric and dielectric properties of CaTiSiO5 ceramics
[1] J. Watson, G. Castro. A review of high-temperature electronics technology and applications. J. Mater. Sci.: Mater. Electron., 26, 9226(2015).
[2] B. Fan, F. Liu, G. Yang, H. Li, G. Zhang, S. Jiang, Q. Wang. Dielectric materials for high-temperature capacitors. IET Nanodielectrics, 1, 32(2018).
[3] A. Zeb, S. J. Milne. High temperature dielectric ceramics: A review of temperature-stable high-permittivity perovskites. J. Mater. Sci.: Mater. Electron., 26, 9243(2015).
[4] I. Seo, H.-W. Kang, S. H. Han. Recent progress in dielectric materials for MLCC application. J. Korean Inst. Electr. Electron. Mater. Eng., 35, 103(2022).
[5] A. Zeb, Y. Bai, T. Button, S. J. Milne. Temperature-stable relative permittivity from −70∘C to 500∘C in (Ba0.8Ca0.2)TiO3–Bi(Mg0.5Ti0.5)O3–NaNbO3 ceramics. J. Am. Ceram. Soc., 97, 2479(2014).
[6] L. Wu, Y. Huan, C. Li, F. Jiang, T. Wei. Achieving ultrabroad temperature stability range with high dielectric constant and superior energy storage density in KNN-based ceramic capacitors. Ceram. Int., 49, 22015(2023).
[7] H. Cheng, H. Du, W. Zhou, D. Zhu, F. Luo, B. Xu. Bi(Zn2/3Nb1/3)O3–(K0.5Na0.5)NbO3 high-temperature lead-free ferroelectric ceramics with low capacitance variation in a broad temperature usage range. J. Am. Ceram. Soc., 96, 833(2013).
[8] Z. Shen, X. Wang, L. Li. Dielectric properties and microstructures of Ta-doped BaTiO3–(Bi0.5Na0.5)TiO3 ceramics for X9R applications. J. Mater. Sci.: Mater. Electron., 28, 3768(2017).
[9] F. Zhang, X. Qiao, Q. Zhou, Q. Shi, X. Chao, Z. Yang, D. Wu. High energy and power density achieved in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics with excellent thermal stability. J. Alloys Compd., 875, 160005(2021).
[10] C. Ma, H. Du, J. Liu, L. Kang, X. Du, X. Xi, H. Ran. High-temperature stability of dielectric and energy-storage properties of weakly-coupled relaxor (1-x)BaTiO3-xBi(Y1/3Ti1/2)O3 ceramics. Ceram. Int., 47, 25029(2021).
[11] W. Jia, Y. Hou, M. Zheng, Y. Xu, M. Zhu, K. Yang, H. Cheng, S. Sun, J. Xing. Advances in lead-free high-temperature dielectric materials for ceramic capacitor application. IET Nanodielectrics, 1, 3(2018).
[12] A. Zeb, S. J. Milne. Stability of high-temperature dielectric properties for (1-x)Ba0.8Ca0.2TiO3–xBi(Mg0.5Ti0.5)O3 ceramics. J. Am. Ceram. Soc., 96, 2887(2013).
[13] L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J.-F. Li, S. Zhang. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci., 102, 72(2019).
[14] M.-J. Pan, C. A. Randall. A brief introduction to ceramic capacitors. IEEE Electr. Insul. Mag., 26, 44(2010).
[15] H. Lee, J. R. Kim, M. J. Lanagan, S. Trolier-McKinstry, C. A. Randall. High-energy density dielectrics and capacitors for elevated temperatures: Ca(Zr, Ti)O3. J. Am. Ceram. Soc., 96, 1209(2013).
[16] X. Xu, A. S. Gurav, P. M. Lessner, C. A. Randall. Robust BME class-I MLCCs for harsh-environment applications. IEEE Trans. Ind. Electron., 58, 2636(2010).
[17] W. Guo, P. Zhao, Z. Yue. Modification of high-temperature electrical properties in CaTiO3 ceramics by Sm3+ and Al3+ doping. J. Alloys Compd., 946, 169389(2023).
[18] Y. Yasumoto, T. Kuwano, H. Taniguchi, S. Fujihara, M. Hagiwara. Temperature-stable linear dielectric response of low-temperature sintered La-doped Bi2SiO5 ceramics. ACS Appl. Electron. Mater., 5, 4323(2023).
[19] J. Kimura, H. Taniguchi, T. Iijima, T. Shimizu, S. Yasui, M. Itoh, H. Funakubo. High temperature stability of the dielectric and insulating properties of Ca(Ti, Zr)SiO5 ceramics. Appl. Phys. Lett., 108, 062902(2016).
[20] X. Zhang, Y. Pu, Y. Ning, L. Zhang, B. Wang, Z. Chen. Ultrahigh energy storage with superfast charge–discharge capability achieved in linear dielectric ceramic. J. Mater. Sci. Technol., 177, 59(2024).
[21] R. J. Cava, W. F. Peck, J. J. Krajewski, G. L. Roberts, B. P. Barber, H. M. O’Bryan, P. L. Gammel. Improvement of the dielectric properties of Ta2O5 through substitution with Al2O3. Appl. Phys. Lett., 70, 1396(1997).
[22] M. Taylor, G. E. Brown. High-temperature structural study of the P21/a ¡–¿ A2/a phase transition in synthetic titanite, CaTiSiO5. Am. Mineral., 61, 435(1976).
[23] R. P. Liferovich, R. H. Mitchell. Tantalum-bearing titanite: Synthesis and crystal structure data. Phys. Chem. Miner., 33, 73(2006).
[24] X. Peng, Z. Liu, Y. Gu, F. Zhang, Y. Li. Dielectric properties of (Al3+, Nb5+) co-doped CaTiSiO5 ceramics at elevated temperature. J. Phys. Chem. Solids, 132, 83(2019).
[25] Z. He et al. Origin of low dielectric loss and giant dielectric response in (Nb + Al) co-doped strontium titanate. J. Am. Ceram. Soc., 101, 5089(2018).
[26] W. Hu et al. Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat. Mater., 12, 821(2013).
[27] H. Ni, F. Zhang, Z. He, Z. Liu. Structure and high temperature dielectric properties of Dy and Al co-doped CaTiSiO5 ceramics. J. Mater. Sci.: Mater. Electron., 35, 1(2024).
[28] R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A: Cryst. Phys., Diffraction, Theor. Gen. Crystallogr., 32, 751(1976).
[29] B. H. Toby. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr., 34, 210(2001).
[30] S. Ghose, Y. Ito, D. M. Hatch. Paraelectric-antiferroelectric phase transition in titanite, CaTiSiO5: I. A high temperature X-ray diffraction study of the order parameter and transition mechanism. Phys. Chem. Miner., 17, 591(1991).
[31] C. Van Heurck, G. Van Tendeloo, S. Ghose, S. Amelinckx. Paraelectric-antiferroelectric phase transition in titanite, CaTiSiO5: II. Electron diffraction and electron microscopic studies of the transition dynamics. Phys. Chem. Miner., 17, 604(1991).
[32] E. Salje, C. Schmidt, U. Bismayer. Structural phase transition in titanite, CaTiSiO5: A Raman-spectroscopic study. Phys. Chem. Miner., 19, 502(1993).
[33] R. M. German, P. Suri, S. J. Park. Liquid phase sintering. J. Mater. Sci., 44, 1(2009).
[34] Y. Li, Y. Jiao, S. Zhang, Z. Li, C. Song, J. Dong, G. Liu, Y. Yan. Improved electric energy storage properties of BT-SBT lead-free ceramics incorporating with A-site substitution with Na & Bi ions and liquid sintering generated by Na0.5Bi0.5TiO3. J. Alloys Compd., 856, 156708(2021).
[35] H.-Y. Lee, R. Freer. The mechanism of abnormal grain growth in Sr0.6Ba0.4Nb2O6 ceramics. J. Appl. Phys., 81, 376(1997).
[36] H.-C. Thong, Z. Xu, C. Zhao, L.-Y. Lou, S. Chen, S.-Q. Zuo, J.-F. Li, K. Wang. Abnormal grain growth in (K, Na)NbO3-based lead-free piezoceramic powders. J. Am. Ceram. Soc., 102, 836(2019).
[37] T. Tunkasiri, G. Rujijanagul. Dielectric strength of fine grained barium titanate ceramics. J. Mater. Sci. Lett., 15, 1767(1996).
[38] D. C. Sinclair, A. R. West. Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys., 66, 3850(1989).
[39] M.-D. Li, X.-G. Tang, S.-M. Zeng, Y.-P. Jiang, Q.-X. Liu, T.-F. Zhang, W.-H. Li. Oxygen-vacancy-related dielectric relaxation behaviours and impedance spectroscopy of Bi(Mg1/2Ti1/2)O3 modified BaTiO3 ferroelectric ceramics. J. Materiomics, 4, 194(2018).
[40] C. Wu, X. Qiu, W. Ge, L. Chen, C. Liu, H. Zhao, L. Li. Enhanced energy storage density and efficiency in La(Mg2/3Ta1/3)O3-doped BiFeO3 based ceramics. J. Alloys Compd., 948, 169723(2023).
Get Citation
Copy Citation Text
Hanwen Ni, Zichen He, Zhifu Liu. Effect of A/B sites co-doping on the structure, electric and dielectric properties of CaTiSiO5 ceramics[J]. Journal of Advanced Dielectrics, 2025, 15(2): 2450022
Category: Research Articles
Received: Jun. 11, 2024
Accepted: Sep. 5, 2024
Published Online: Feb. 18, 2025
The Author Email: Hanwen Ni (nihanwen21@mails.ucas.ac.cn), Zichen He (hezichen@mail.sic.ac.cn), Zhifu Liu (liuzf@mail.sic.ac.cn)