Journal of the Chinese Ceramic Society, Volume. 52, Issue 3, 1117(2024)
Research Progress on Y2O3-MgO Nanocomposite Ceramics as Medium Infrared Laser Host Materials
[1] [1] WERLE P, SLEMR F, MAURER K, et al. Near- and mid-infrared laser-optical sensors for gas analysis[J]. Opt Lasers Eng, 2002, 37(2/3): 101-114.
[2] [2] WALSH B M, LEE H R, BARNES N P. Mid infrared lasers for remote sensing applications[J]. J Lumin, 2016, 169: 400-405.
[3] [3] TH BEKMAN H H P, VAN DEN HEUVEL J C, VAN PUTTEN F J M, et al. Development of a mid-infrared laser for study of infrared countermeasures techniques[C]//Conference on Technologies for Optical Countermeasures, London, England, 2004: 27-38.
[4] [4] LI Jiang, TIAN Feng, LIU Ziyu. J Synth Cryst, 2020, 49(8): 1467-1487.
[5] [5] ZHANG B, WANG L, CHEN F. Recent advances in femtosecond laser processing of LiNbO3 crystals for photonic applications[J]. Laser Photon Rev, 2020, 14(8): 1900407.
[6] [6] XIONG B C, ZHANG B, LU Q M, et al. Micro-spectroscopy investigation on femtosecond laser writing of LiNbO3 crystal[J]. Opt Mater, 2020, 107: 110103.
[7] [7] WANG L, XING T L, HU S W, et al. Mid-infrared ZGP-OPO with a high optical-to-optical conversion efficiency of 75.7[J]. Opt Express, 2017, 25(4): 3373-3380.
[8] [8] SCHELLHORN M, SPINDLER G, EICHHORN M. Mid-infrared ZGP OPO with divergence compensation and high beam quality[J]. Opt Express, 2018, 26(2): 1402-1410.
[9] [9] LI J H, WEI D S, YAO B Q, et al. 43 W, 7 ns constant pulse duration, high-repetition-rate langasite cavity-dumped Ho:YAG laser and its appilcation in mid-infrared ZGP OPOs[J]. Opt Laser Technol, 2023, 157: 108631.
[10] [10] MIROV S, FEDOROV V, MOSKALEV I, et al. Progress in Cr2+ and Fe2+ doped mid-IR laser materials[J]. Laser Photonics Rev, 2010, 4(1): 21-41.
[11] [11] ANASHKINA E A, ANDRIANOV A V, DOROFEEV V V, et al. Development of infrared fiber lasers at 1 555?nm and at 2 800?nm based on Er-doped zinc-tellurite glass fiber[J]. J Non Cryst Solids, 2019, 525: 119667.
[12] [12] XU Jianqiu, PAN Yubai, HANG Yin. Infrared Laser Eng, 2012, 41(12): 3202-3208.
[13] [13] WANG Fei, PENG Yuefeng, TANG Dingyuan, et al. Acta Opt Sin, 2021, 41(1): 278-284.
[14] [14] UEHARA H, YASUHARA R, TOKITA S, et al. Efficient continuous wave and quasi-continuous wave operation of a 2.8 μm Er:Lu2O3 ceramic laser[J]. Opt Express, 2017, 25(16): 18677-18684.
[15] [15] CHEN B, DU T Y, WANG J, et al. Reduction of thermal effects in a 2.7-μm Er:Y2O3 ceramic laser with annular pumping[J]. Opt Express, 2023, 31(2): 2584-2592.
[16] [16] HOU W, XU Z, ZHAO H, et al. Spectroscopic analysis of Er:Y2O3 crystal at 2.7 μm mid-IR laser[J]. Opt Mater, 2020, 107: 110017.
[17] [17] HUANG Guocan, LIU Peng, XU Bin, et al. J Synth Cryst, 2016, 45(5): 1248-1254.
[18] [18] MA H J, JUNG W K, BAEK C, et al. Influence of microstructure control on optical and mechanical properties of infrared transparent Y2O3-MgO nanocomposite[J]. J Eur Ceram Soc, 2017, 37(15): 4902-4911.
[19] [19] HARRIS D C, CAMBREA L R, JOHNSON L F, et al. Properties of an infrared-transparent MgO:Y2O3 nanocomposite[J]. J Am Ceram Soc, 2013, 96(12): 3828-3835.
[20] [20] XU S Q, LI J, KOU H M, et al. Spark plasma sintering of Y2O3-MgO composite nanopowder synthesized by the esterification sol-gel route[J]. Ceram Int, 2015, 41(2): 3312-3317.
[21] [21] LIU L H, MORITA K, SUZUKI T S, et al. Synthesis of highly-infrared transparent Y2O3-MgO nanocomposites by colloidal technique and SPS[J]. Ceram Int, 2020, 46(9): 13669-13676.
[22] [22] ABBASLOO M, SHOKROLLAHI H, ALHAJI A. Slip-casting process of MgO-Y2O3 nanocomposite: Investigation of powder synthesis method[J]. Mater Chem Phys, 2020, 254: 123387.
[23] [23] MUOTO C K, JORDAN E H, GELL M, et al. Phase homogeneity in Y2O3-MgO nanocomposites synthesized by thermal decomposition of nitrate precursors with ammonium acetate additions[J]. J Am Ceram Soc, 2011, 94(12): 4207-4217.
[24] [24] LIU Z Y, IKESUE A, LI J. Research progress and prospects of rare-earth doped sesquioxide laser ceramics[J]. J Eur Ceram Soc, 2021, 41(7): 3895-3910.
[25] [25] WANG Y S, MU H J, WU N, et al. Effects of Ho3+ concentration on the fabrication and properties of Ho:Y2O3-MgO nanocomposite for mid-infrared laser applications[J]. Ceram Int, 2023, 49(7): 10625-10633.
[26] [26] BLAIR V L, FLEISCHMAN Z D, MERKLE L D, et al. Co-precipitation of rare-earth-doped Y2O3 and MgO nanocomposites for mid-infrared solid-state lasers[J]. Appl Opt, 2017, 56(3): B154-B158.
[27] [27] SAFRONOVA N A, YAVETSKIY R P, KRYZHANOVSKA O S, et al. A novel IR-transparent Ho3+:Y2O3-MgO nanocomposite ceramics for potential laser applications[J]. Ceram Int, 2021, 47(1): 1399-1406.
[28] [28] MA H J, JUNG W K, PARK Y, et al. A novel approach of an infrared transparent Er:Y2O3-MgO nanocomposite for eye-safe laser ceramics[J]. J Mater Chem C, 2018, 6(41): 11096-11103.
[29] [29] PABST W, H?íBALOVá S. Light scattering models for describing the transmittance of transparent and translucent alumina and zirconia ceramics[J]. J Eur Ceram Soc, 2021, 41(3): 2058-2075.
[30] [30] FURUSE H, HORIUCHI N, KIM B N. Transparent non-cubic laser ceramics with fine microstructure[J]. Sci Rep, 2019, 9: 10300.
[31] [31] APETZ R, VAN BRUGGEN M P B. Transparent alumina: A light-scattering model[J]. J Am Ceram Soc, 2003, 86(3): 480-486.
[32] [32] LI Jiang, JIANG Nan, XU Shengquan, et al. J Chin Ceram Soc, 2016, 44(9): 1302-1314.
[33] [33] PERMIN D A, BELYAEV A V, KOSHKIN V A, et al. Effect of hot pressing conditions on the microstructure and optical properties of MgO-Y2O3 composite ceramics[J]. Inorg Mater, 2021, 57(8): 858-866.
[34] [34] PERMIN D A, BOLDIN M S, BELYAEV A V, et al. IR-transparent MgO-Y2O3 ceramics by self-propagating high-temperature synthesis and spark plasma sintering[J]. Ceram Int, 2020, 46(10): 15786-15792.
[35] [35] CARNEIRO P M C, MACEIRAS A, NUNES-PEREIRA J, et al. Property characterization and numerical modelling of the thermal conductivity of CaZrO3-MgO ceramic composites[J]. J Eur Ceram Soc, 2021, 41(14): 7241-7252.
[36] [36] HOSTA?A J, PABST W, MATěJí?EK J. Thermal conductivity of Al2O3-ZrO2 composite ceramics[J]. J Am Ceram Soc, 2011, 94(12): 4404-4409.
[37] [37] ANGLE J P, WANG Z J, DAMES C, et al. Comparison of two-phase thermal conductivity models with experiments on dilute ceramic composites[J]. J Am Ceram Soc, 2013, 96(9): 2935-2942.
[38] [38] ITATANI K, TSUJIMOTO T, KISHIMOTO A. Thermal and optical properties of transparent magnesium oxide ceramics fabricated by post hot-isostatic pressing[J]. J Eur Ceram Soc, 2006, 26(4/5): 639-645.
[39] [39] PABST W, HOSTA?A J. Thermal conductivity of ceramic nanocomposites—The phase mixture modeling approach[C]//12th INTERNATIONAL CERAMICS CONGRESS PART J, Advances in Science and Technology. Switzerland: Trans Tech Publications Ltd, 2010: 68-73.
[40] [40] WANG J, ZHAO Y G, YIN D L, et al. Holmium doped yttria transparent ceramics for 2-μm solid state lasers[J]. J Eur Ceram Soc, 2018, 38(4): 1986-1989.
[41] [41] CHEN S M, YANG S H, CHEN L, et al. MgO-Y2O3:Eu composite ceramics with high quantum yield and excellent thermal performance[J]. J Eur Ceram Soc, 2023, 43(8): 3553-3562.
[42] [42] C T M, THOMAS J K, Y V S, et al. A comprehensive analysis of the influence of resistive coupled microwave sintering on the optical, thermal and hardness properties of infrared transparent yttria-magnesia composites[J]. Ceram Int, 2017, 43(18): 17048-17056.
[43] [43] XUE Yanyan, XU Xiaodong, SU Liangbi, et al. J Synth Cryst, 2020, 49(8): 1347-1360.
[44] [44] ZHAO Chengchun, ZHANG Peixiong, LI Shanming, et al. J Synth Cryst, 2022, 51(Suppl 1): 1573-1587.
[45] [45] XU S Q, LI J, LI C Y, et al. Infrared-transparent Y2O3-MgO nanocomposites fabricated by the glucose sol-gel combustion and hot-pressing technique[J]. J Am Ceram Soc, 2015, 98(9): 2796-2802.
[46] [46] ZOU Zhangxiong, XIANG Jinzhong, XU Siyong. Phys Exam Test, 2012, 30(6): 13-17.
[47] [47] MAHMOUDIAN MAHMOUDABAD M, HASHEMI B. Investigation of affecting parameters on slip casting of yttria-magnesia IR-transparent bodies[J]. Ceram Int, 2019, 45(8): 10400-10413.
[48] [48] XU Y Y, MAO X J, FAN J T, et al. Fabrication of transparent yttria ceramics by alcoholic slip-casting[J]. Ceram Int, 2017, 43(12): 8839-8844.
[49] [49] WANG X H, CHEN P L, CHEN I W. Two-step sintering of ceramics with constant grain-size, I. Y2O3[J]. J Am Ceram Soc, 2006, 89(2): 431-437.
[50] [50] LI B R, LIU D Y, LIU J J, et al. Two-step sintering assisted consolidation of bulk titania nano-ceramics by spark plasma sintering[J]. Ceram Int, 2012, 38(5): 3693-3699.
[51] [51] XU S Q, LI J, LI C Y, et al. Hot pressing of infrared-transparent Y2O3-MgO nanocomposites using sol-gel combustion synthesized powders[J]. J Am Ceram Soc, 2015, 98(3): 1019-1026.
[52] [52] SHEN Z Y, ZHU Q Q, FENG T, et al. Fabrication of infrared-transparent Y2O3-MgO composites using nanopowders synthesized via thermal decomposition[J]. Ceram Int, 2021, 47(9): 13007-13014.
[53] [53] SHEN Z Y, XIE J X, QIAN K C, et al. Preparation and study of the mechanical and optical properties of infrared transparent Y2O3-MgO composite ceramics[J]. J Am Ceram Soc, 2021, 104(12): 6335-6344.
[54] [54] YONG S M. Influence of the SPS heating rate on the optical and mechanical properties of Y2O3-MgO nanocomposites[J]. J Ceram Process Res, 2019, 20(1): 59-62.
[55] [55] SAFRONOVA N A, KRYZHANOVSKA O S, DOBROTVORSKA M V, et al. Influence of sintering temperature on structural and optical properties of Y2O3-MgO composite SPS ceramics[J]. Ceram Int, 2020, 46(5): 6537-6543.
[56] [56] SUN H B, ZHANG Y J, GONG H Y, et al. Microwave sintering and kinetic analysis of Y2O3-MgO composites[J]. Ceram Int, 2014, 40(7): 10211-10215.
[57] [57] PERMIN D A, EGOROV S V, BELYAEV A V, et al. Microwave sintering of IR-transparent Y2O3-MgO composite ceramics[J]. Ceram Int, 2023, 49(5): 7236-7244.
[58] [58] CHEN I W, WANG X H. Sintering dense nanocrystalline ceramics without final-stage grain growth[J]. Nature, 2000, 404(6774): 168-171.
[59] [59] MAZAHERI M, ZAHEDI A M, SADRNEZHAAD S K. Two-step sintering of nanocrystalline ZnO compacts: Effect of temperature on densification and grain growth[J]. J Am Ceram Soc, 2008, 91(1): 56-63.
[60] [60] LI J G, YE Y P. Densification and grain growth of Al2O3 nanoceramics during pressureless sintering[J]. J Am Ceram Soc, 2006, 89(1): 139-143.
[61] [61] MA J, ZHU S G, OUYANG C X. Two-step hot-pressing sintering of nanocomposite WC-MgO compacts[J]. J Eur Ceram Soc, 2011, 31(10): 1927-1935.
[62] [62] MA H J, JUNG W K, YONG S M, et al. Microstructural freezing of highly NIR transparent Y2O3-MgO nanocomposite via pressure-assisted two-step sintering[J]. J Eur Ceram Soc, 2019, 39(15): 4957-4964.
[63] [63] BRARD N, PETIT J, EMERY N, et al. Control of the nanostructure of MgO-Y2O3 composite ceramics using two-step sintering for high temperature mid infrared window applications[J]. Ceram Int, 2023, 49(11): 18187-18194.
[64] [64] JI Wei, FU Zhengyi. Mater China, 2018, 37(9): 662-670.
[65] [65] HUANG Z Y, DENG J R, WANG H M, et al. A new method for the preparation of transparent Y2O3 nanocrystalline ceramic with an average grain size of 20 nm[J]. Scr Mater, 2020, 182: 57-61.
[66] [66] HUANG Z Y, SHI Y, ZHANG Y T, et al. An effective strategy for preparing transparent ceramics using nanorod powders based on pressure-assisted particle fracture and rearrangement[J]. J Adv Ceram, 2022, 11(12): 1976-1987.
[67] [67] ANSELMI-TAMBURINI U, GARAY J E, MUNIR Z A. Fast low-temperature consolidation of bulk nanometric ceramic materials[J]. Scr Mater, 2006, 54(5): 823-828.
[68] [68] CHEN X T, GUO W, WANG H M, et al. Highly transparent cubic γ-Al2O3 ceramic prepared by high-pressure sintering of home-made nanopowders[J]. J Eur Ceram Soc, 2023, 43(9): 4219-4225.
[69] [69] LIU L H, MORITA K, SUZUKI T S, et al. Evolution of microstructure, mechanical, and optical properties of Y2O3-MgO nanocomposites fabricated by high pressure spark plasma sintering[J]. J Eur Ceram Soc, 2020, 40(13): 4547-4555.
[70] [70] ZHANG H T, YANG J, BROWN J A, et al. La3+ and Er3+ co-doped Y2O3 transparent ceramics with a tunable refractive index and long coherence lifetime[J]. Opt Mater Express, 2019, 10(1): 99.
[71] [71] HUANG Y H, JIANG D L, ZHANG J X, et al. Precipitation synthesis and sintering of lanthanum doped yttria transparent ceramics[J]. Opt Mater, 2009, 31(10): 1448-1453.
[72] [72] ZHENG L H, ZHAO J B, WANG Y X, et al. Mid-IR optical property of Dy:CaF2-SrF2 crystal fabricated by multicrucible temperature gradient technology[J]. Crystals, 2021, 11(8): 907.
[73] [73] JOSHI A, HAYNES N D, ZELMON D E, et al. Impurity concentration and temperature dependence of the refractive indices of Er3+ doped ceramic Y2O3[J]. Opt Express, 2012, 20(4): 4428.
[74] [74] ZHANG L L, FAN J T, QIAN K C, et al. Enhanced near-infrared transmission of ZnO-doped Y2O3-MgO nanocomposites with reduced light scattering due to decreased refractive index difference[J]. J Eur Ceram Soc, 2022, 42(11): 4616-4622.
[75] [75] SANAMYAN T, FLEISCHMAN Z. Spectroscopic properties of Er-doped Y2O3 ceramic related to mid-IR laser transition[J]. Opt. Mater. Express, 2016, 6: 3109-3118.
[76] [76] PERMIN D, BELYAEV A, KOSHKIN V, et al. Erbium-doped Lu2O3-MgO and Sc2O3-MgO IR-transparent composite ceramics[J]. Nanomaterials, 2023, 13(10): 1620.
[77] [77] GHEORGHE C, LUPEI A, LUPEI V, et al. Spectroscopic properties of Ho3+ doped Sc2O3 transparent ceramic for laser materials[J]. J Appl Phys, 2009, 105(12): 123110.
[78] [78] SNETKOV I L, BALASHOV V V. Thermo-optical properties of Ho:Y2O3 ceramics[J]. Opt Mater, 2020, 100: 109617.
Get Citation
Copy Citation Text
MU Haojie, LI Xiaodong. Research Progress on Y2O3-MgO Nanocomposite Ceramics as Medium Infrared Laser Host Materials[J]. Journal of the Chinese Ceramic Society, 2024, 52(3): 1117
Category:
Received: Jul. 22, 2023
Accepted: --
Published Online: Aug. 5, 2024
The Author Email: LI Xiaodong (xdli@mail.neu.edu.cn)
CSTR:32186.14.