Journal of the Chinese Ceramic Society, Volume. 53, Issue 4, 880(2025)
Aluminum Metal Battery Anodes: Challenges and Progresses
[1] [1] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652–657.
[2] [2] WEISS M, RUESS R, KASNATSCHEEW J, et al. Fast charging of lithium-ion batteries: A review of materials aspects[J]. Adv Energy Mater, 2021, 11(33): 2101126.
[3] [3] FAN E S, LI L, WANG Z P, et al. Sustainable recycling technology for Li-ion batteries and beyond: Challenges and future prospects[J]. Chem Rev, 2020, 120(14): 7020–7063.
[4] [4] ZHANG Y, LIU S Q, JI Y J, et al. Emerging nonaqueous aluminum-ion batteries: Challenges, status, and perspectives[J]. Adv Mater, 2018, 30(38): e1706310.
[5] [5] TU J G, SONG W L, LEI H P, et al. Nonaqueous rechargeable aluminum batteries: Progresses, challenges, and perspectives[J]. Chem Rev, 2021, 121(8): 4903–4961.
[6] [6] JIANG M, FU C P, MENG P Y, et al. Challenges and strategies of low-cost aluminum anodes for high-performance Al-based batteries[J]. Adv Mater, 2022, 34(2): e2102026.
[7] [7] MENG P Y, YANG Z H, ZHANG J, et al. Electrolyte design for rechargeable aluminum-ion batteries: Recent advances and challenges[J]. Energy Storage Mater, 2023, 63: 102953.
[8] [8] MA D W, YUAN D, DE LEN C P, et al. Current progress and future perspectives of electrolytes for rechargeable aluminum-ion batteries[J]. Energy Environ Mater, 2023, 6(1): e12301.
[9] [9] LI Q F, BJERRUM N J. Aluminum as anode for energy storage and conversion: A review[J]. J Power Sources, 2002, 110(1): 1–10.
[10] [10] ZAROMB S. The use and behavior of aluminum anodes in alkaline primary batteries[J]. J Electrochem Soc, 1962, 109(12): 1125.
[11] [11] WU C, GU S C, ZHANG Q H, et al. Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery[J]. Nat Commun, 2019, 10(1): 73.
[12] [12] PAN W D, WANG Y F, ZHANG Y G, et al. A low-cost and dendrite-free rechargeable aluminium-ion battery with superior performance[J]. J Mater Chem A, 2019, 7(29): 17420–17425.
[13] [13] ZHOU A X, JIANG L W, YUE J M, et al. Water-in-salt electrolyte promotes high-capacity FeFe(CN)6 cathode for aqueous Al-ion battery[J]. ACS Appl Mater Interfaces, 2019, 11(44): 41356–41362.
[14] [14] ZHAO Q, ZACHMAN M J, AL SADAT W I, et al. Solid electrolyte interphases for high-energy aqueous aluminum electrochemical cells[J]. Sci Adv, 2018, 4(11): eaau8131.
[15] [15] HAO Q F, CHEN F, CHEN X T, et al. Highly stable Al metal anode enabled by surface chemical passivation for long-life aqueous Al metal batteries[J]. ACS Appl Mater Interfaces, 2023, 15(28): 34303–34310.
[16] [16] DEL DUCA B S. Electrochemical behavior of the aluminum electrode in molten salt electrolytes[J]. J Electrochem Soc, 1971, 118(3): 405.
[17] [17] HOLLECK G L. The reduction of chlorine on carbon in AlCl3-KCl-NaCl melts[J]. J Electrochem Soc, 1972, 119(9): 1158.
[18] [18] PANG Q Q, MENG J S, GUPTA S, et al. Fast-charging aluminium-chalcogen batteries resistant to dendritic shorting[J]. Nature, 2022, 608(7924): 704–711.
[19] [19] GIFFORD P R, PALMISANO J B. An aluminum/chlorine rechargeable cell employing a room temperature molten salt electrolyte[J]. J Electrochem Soc, 135(3): 650–654.
[20] [20] LIN M C, GONG M, LU B G, et al. An ultrafast rechargeable aluminium-ion battery[J]. Nature, 2015, 520(7547): 325–328.
[21] [21] SUN H B, WANG W, YU Z J, et al. A new aluminium-ion battery with high voltage, high safety and low cost[J]. Chem Commun, 2015, 51(59): 11892–11895.
[22] [22] SUN X G, FANG Y X, JIANG X G, et al. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries[J]. Chem Commun, 2016, 52(2): 292–295.
[23] [23] KIM D J, YOO D J, OTLEY M T, et al. Rechargeable aluminium organic batteries[J]. Nat Energy, 2019, 4: 51–59.
[24] [24] TIAN H J, ZHANG S L, MENG Z, et al. Rechargeable aluminum/iodine battery redox chemistry in ionic liquid electrolyte[J]. ACS Energy Lett, 2017, 2(5): 1170–1176.
[25] [25] GLOV M. Electrodeposition of aluminium from organic aprotic solvents[J]. Surf Technol, 1980, 11(5): 357–369.
[26] [26] KUMAR S, RAMA P, YANG G L, et al. Additive-driven interfacial engineering of aluminum metal anode for ultralong cycling life[J]. Nanomicro Lett, 2022, 15(1): 21.
[27] [27] LEISEGANG T, MEUTZNER F, ZSCHORNAK M, et al. The aluminum-ion battery: A sustainable and seminal concept?[J]. Front Chem, 2019, 7: 268.
[28] [28] RAKOV D A, AHMED N, KONG Y Q, et al. Exploring the impact of in situ-formed solid-electrolyte interphase on the cycling performance of aluminum metal anodes[J]. ACS Nano, 2024, 18(41): 28456–28468.
[29] [29] JABERI A, SONG J, GAUVIN R. Study of lithium transport in Li2O component of the solid electrolyte interphase in lithium-ion batteries[J]. Comput Mater Sci, 2024, 237: 112914.
[30] [30] DONG T, NG K L, WANG Y J, et al. Solid electrolyte interphase engineering for aqueous aluminum metal batteries: A critical evaluation[J]. Adv Energy Mater, 2021, 11(20): 2100077.
[31] [31] LI C, PATRA J, LI J, et al. A novel moisture-insensitive and low-corrosivity ionic liquid electrolyte for rechargeable aluminum batteries[J]. Adv Funct Mater, 2020, 30(12): 1909565.
[32] [32] REED L D, MENKE E. The roles of V2O5 and stainless steel in rechargeable Al-ion batteries[J]. J Electrochem Soc, 2013, 160(6): A915–A917.
[33] [33] ZHENG J X, YIN J F, ZHANG D H, et al. Spontaneous and field-induced crystallographic reorientation of metal electrodeposits at battery anodes[J]. Sci Adv, 2020, 6(25): eabb1122.
[34] [34] JCKLE M, HELMBRECHT K, SMITS M, et al. Self-diffusion barriers: Possible descriptors for dendrite growth in batteries?[J]. Energy Environ Sci, 2018, 11(12): 3400–3407.
[35] [35] YAO L, JU S L, XU T, et al. MXene-based mixed conductor interphase for dendrite-free flexible Al organic battery[J]. ACS Nano, 2023, 17(24): 25027–25036.
[36] [36] JU S L, QIAO Q, XU T, et al. Stable aluminum metal anode enabled by dual-functional molybdenum nanoparticles[J]. Small, 2024, 20(17): e2308632.
[37] [37] SHEN X J, SUN T, YANG L, et al. Ultra-fast charging in aluminum-ion batteries: Electric double layers on active anode[J]. Nat Commun, 2021, 12(1): 820.
[38] [38] ZHANG Y, ZUO T T, POPOVIC J, et al. Towards better Li metal anodes: Challenges and strategies[J]. Mater Today, 2020, 33: 56–74.
[39] [39] YAN C S, LV C D, JIA B E, et al. Reversible Al metal anodes enabled by amorphization for aqueous aluminum batteries[J]. J Am Chem Soc, 2022, 144(25): 11444–11455.
[40] [40] WEI M H, WANG K L, ZUO Y Y, et al. A Prussian-blue bifunctional interface membrane for enhanced flexible Al–air batteries[J]. Adv Funct Mater, 2023, 33(37): 2302243.
[41] [41] CHENG T T, HU J S, ZHOU C H, et al. Luminescent metal-organic frameworks for nitro explosives detection[J]. Sci China Chem, 2016, 59(8): 929–947.
[42] [42] YAN C S, LV C D, WANG L G, et al. Architecting a stable high-energy aqueous Al-ion battery[J]. J Am Chem Soc, 2020, 142(36): 15295–15304.
[43] [43] RAN Q, ZENG S P, ZHU M H, et al. Uniformly MXene-grafted eutectic aluminum-cerium alloys as flexible and reversible anode materials for rechargeable aluminum-ion battery[J]. Adv Funct Mater, 2023, 33(1): 2211271.
[44] [44] RAN Q, SHI H, MENG H, et al. Aluminum-copper alloy anode materials for high-energy aqueous aluminum batteries[J]. Nat Commun, 2022, 13(1): 576.
[45] [45] LV H M, YANG S, LI C, et al. Suppressing passivation layer of Al anode in aqueous electrolytes by complexation of H2PO4− to Al3+ and an electrochromic Al ion battery[J]. Energy Storage Mater, 2021, 39: 412–418.
[46] [46] FAN L, LU H M, LENG J, et al. The effect of crystal orientation on the aluminum anodes of the aluminum–air batteries in alkaline electrolytes[J]. J Power Sources, 2015, 299: 66–69.
[47] [47] ZHANG Y L, BIAN Y H, LV Z C, et al. Aqueous aluminum cells: Mechanisms of aluminum anode reactions and role of the artificial solid electrolyte interphase[J]. ACS Appl Mater Interfaces, 2021, 13(31): 37091–37101.
[48] [48] HU E H, JIA B E, NONG W, et al. Boosting aluminum adsorption and deposition on single-atom catalysts in aqueous aluminum-ion battery[J]. Adv Energy Mater, 2024, 14(34): 2401598.
[49] [49] EL SHAYEB H A, ABD EL WAHAB F M, ZEIN EL ABEDIN S. Electrochemical behaviour of Al, Al–Sn, Al–Zn and Al–Zn–Sn alloys in chloride solutions containing stannous ions[J]. Corros Sci, 2001, 43(4): 655–669.
[50] [50] KHIRECHE S, BOUGHRARA D, KADRI A, et al. Corrosion mechanism of Al, Al–Zn and Al–Zn–Sn alloys in 3wt.% NaCl solution[J]. Corros Sci, 2014, 87: 504–516.
[51] [51] EL ABEDIN S Z, ENDRES F. Electrochemical behaviour of Al, Al: In and Al–Ga–In alloys in chloride solutions containing zinc ions[J]. J Appl Electrochem, 2004, 34(10): 1071–1080.
[52] [52] JIA B E, HU E H, HU Z Y, et al. Laminated tin–aluminum anodes to build practical aqueous aluminum batteries[J]. Energy Storage Mater, 2024, 65: 103141.
[53] [53] GENG Y F, PAN L, PENG Z Y, et al. Electrolyte additive engineering for aqueous Zn ion batteries[J]. Energy Storage Mater, 2022, 51: 733–755.
[54] [54] SUO L M, BORODIN O, GAO T, et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015, 350(6263): 938–943.
[55] [55] LI J F, HUI K S, JI S P, et al. Electrodeposition of a dendrite-free 3D Al anode for improving cycling of an aluminum–graphite battery[J]. Carbon Energy, 2022, 4(2): 155–169.
[56] [56] LINDAHL N, BITENC J, DOMINKO R, et al. Aluminum metal–organic batteries with integrated 3D thin film anodes[J]. Adv Funct Mater, 2020, 30(51): 2004573.
[57] [57] LONG Y, LI H, YE M C, et al. Suppressing Al dendrite growth towards a long-life Al-metal battery[J]. Energy Storage Mater, 2021, 34: 194–202.
[58] [58] WANG S X, GUO Y, DU X F, et al. Space limited growth strategy for ultra-high areal capacity rechargeable aluminum batteries[J]. Energy Storage Mater, 2023, 60: 102826.
[59] [59] WANG S X, GUO Y, DU X F, et al. Bottom growth strategy for high areal capacity rechargeable aluminum batteries[J]. Nano Energy, 2023, 114: 108626.
[60] [60] ZHENG J X, ZHAO Q, TANG T, et al. Reversible epitaxial electrodeposition of metals in battery anodes[J]. Science, 2019, 366(6465): 645–648.
[61] [61] NAGY K S, KAZEMIABNAVI S, THORNTON K, et al. Thermodynamic overpotentials and nucleation rates for electrodeposition on metal anodes[J]. ACS Appl Mater Interfaces, 2019, 11(8): 7954–7964.
[62] [62] WANG S X, GUO Y, DU X F, et al. Preferred crystal plane electrodeposition of aluminum anode with high lattice-matching for long-life aluminum batteries[J]. Nat Commun, 2024, 15(1): 6476.
[63] [63] HE S M, WANG J, ZHANG X, et al. Aluminum dendrite suppression by graphite coated anodes of Al-metal batteries[J]. J Mater Chem A, 2023, 11(32): 17020–17026.
[64] [64] WANG S X, GUO Y, DU X F, et al. Stable aluminum metal anodes with high ionic conductivity and high aluminophilic site[J]. Chem Eng J, 2024, 494: 153194.
[65] [65] XIE C, WU F, LV Z K, et al. A mixed ionic/electronic conductor interphase enhances interfacial stability for aluminium-metal anode[J]. Adv Funct Mater, 2024, 34(48): 2408296.
[66] [66] MUOZ-TORRERO D, LEUNG P, GARCA-QUISMONDO E, et al. Investigation of different anode materials for aluminium rechargeable batteries[J]. J Power Sources, 2018, 374: 77–83.
[67] [67] ZHENG J X, BOCK D C, TANG T, et al. Regulating electrodeposition morphology in high-capacity aluminium and zinc battery anodes using interfacial metal–substrate bonding[J]. Nat Energy, 2021, 6(4): 398–406.
[68] [68] ZHAO Q, ZHENG J X, DENG Y, et al. Regulating the growth of aluminum electrodeposits: Towards anode-free Al batteries[J]. J Mater Chem A, 2020, 8(44): 23231–23238.
[69] [69] MENG Y H, WANG M M, LI K, et al. Reversible, dendrite-free, high-capacity aluminum metal anode enabled by aluminophilic interface layer[J]. Nano Lett, 2023, 23(6): 2295–2303.
[70] [70] GUO X L, DING Y, XUE L G, et al. A self-healing room-temperature liquid-metal anode for alkali-ion batteries[J]. Adv Funct Mater, 2018, 28(46): 1804649.
[71] [71] XU T, YAO L, XIA G L, et al. Self-healing liquid metal layer as high-capacity and long cycle life anode for Al-ion batteries[J]. Energy Storage Mater, 2023, 63: 103057.
[72] [72] WANG Q, ZHANG Q Q, CHEN B, et al. Electrodeposition of bright Al coatings from 1-butyl-3-methylimidazolium chloroaluminate ionic liquids with specific additives[J]. J Electrochem Soc, 2015, 162(8): D320–D324.
[73] [73] XIE Y H, DU X F, MENG Y, et al. Dynamic molecular adsorption interface strategy for stable aluminum batteries[J]. Energy Storage Mater, 2024, 70: 103545.
[74] [74] XIE Y H, MENG Y, LIU M X, et al. Optimized electrode/electrolyte interface engineering for dendrite-free Al anode and self-activated graphite cathode[J]. Adv Funct Mater, 2024, 34(48): 2411395.
[75] [75] WANG H L, GU S C, BAI Y, et al. High-voltage and noncorrosive ionic liquid electrolyte used in rechargeable aluminum battery[J]. ACS Appl Mater Interfaces, 2016, 8(41): 27444–27448.
[76] [76] REED L D, ARTEAGA A, MENKE E J. A combined experimental and computational study of an aluminum triflate/diglyme electrolyte[J]. J Phys Chem B, 2015, 119(39): 12677–12681.
[77] [77] REED L D, ORTIZ S N, XIONG M, et al. A rechargeable aluminum-ion battery utilizing a copper hexacyanoferrate cathode in an organic electrolyte[J]. Chem Commun, 2015, 51(76): 14397–14400.
[78] [78] MANDAI T, JOHANSSON P. Haloaluminate-free cationic aluminum complexes: Structural characterization and physicochemical properties[J]. J Phys Chem C, 2016, 120(38): 21285–21292.
[79] [79] KUMAR S, RAMA P, LIEU W Y, et al. A bi-based artificial interphase to achieve ultra-long cycling life of Al-metal anode in non-aqueous electrolyte[J]. Energy Storage Mater, 2024, 65: 103087
Get Citation
Copy Citation Text
HE Qing, ZHANG Bo, LIU Yiyuan, HAN Daliang, WENG Zhe, YANG Quanhong. Aluminum Metal Battery Anodes: Challenges and Progresses[J]. Journal of the Chinese Ceramic Society, 2025, 53(4): 880
Special Issue:
Received: Nov. 4, 2024
Accepted: May. 29, 2025
Published Online: May. 29, 2025
The Author Email: HAN Daliang (dlhan@tju.edu.cn)