Infrared and Laser Engineering, Volume. 54, Issue 3, 20240496(2025)

Adaptive tracking method for infrared small targets in dynamic and complex scenes (invited)

Tianlei MA1,2, Xinhao LIU1, Jinzhu PENG1,2、*, Zhiqiang KAI1, and Hao WANG1
Author Affiliations
  • 1School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
  • 2The State Key Laboratory of Intelligent Agricultural Power Equipment, Zhengzhou University, Luoyang 471039, China
  • show less
    Figures & Tables(16)
    Tracking framework of the proposed network (DTFE module represent dynamic template feature enhancement module; MSA module represent multi-layer self-attention module; ATU module represent adaptive template update module)
    Dynamic Template Feature Enhancement (DTFE) module
    Multi-layer Self-attention (MSA) module (This module consists of encoder-decoder self-attention module and pixel-level self-attention module connected in series)
    Visualization of template features
    Success rate curves of different algorithms on Seq1-Seq8
    Precision curves of different algorithms on Seq1-Seq8
    Visualization results of different algorithms on Seq1-Seq8
    Feature visualization under scale changes (The scale gradually decreases from left to right)
    Feature visualization under posture changes
    The visualization results of the proposed method in scenarios with scale and attitude changes (Scale change in the first row, posture change in the second row)
    • Table 1. The structure of multi-scale feature extraction and fusion network

      View table
      View in Article

      Table 1. The structure of multi-scale feature extraction and fusion network

      LevelFilterTemplateSearch
      Input-127×127×3255×255×3
      Conv03×3127×127×12255×255×12
      Basic residual3×3127×127×12255×255×12
      Basic residual3×3127×127×12255×255×12
      Maxpooling2×263×63×12127×127×12
      Conv13×363×63×40127×127×40
      Maxpooling2×231×31×4063×63×40
      Conv23×331×31×6463×63×64
      Maxpooling2×215×15×6431×31×64
      Conv33×315×15×12831×31×128
      ASPP-15×15×12831×31×128
      Feature fusion-15×15×6431×31×64
    • Table 2. Quantitative comparison results (success rate)

      View table
      View in Article

      Table 2. Quantitative comparison results (success rate)

      AlgorithmsSeq1Seq2Seq3Seq4Seq5Seq6Seq7Seq8Speed/frame·s–1
      MOSSE0.0300.1320.0880.0670.0310.7880.1080.540580
      CSK0.0520.0080.1800.0380.0680.4340.0820.021430
      BACF0.0130.0510.3150.0240.0300.0750.1340.63383
      DSST0.0530.0510.3220.0210.0310.4610.1650.615145
      KCF0.0130.3110.3240.0230.0320.4040.4640.019502
      ECO0.8100.1320.3350.0210.0380.7970.1370.73890
      SiamBAN0.0350.6490.4110.1720.0480.9150.7960.69264
      SiamCAR0.0330.7640.4290.0380.2740.8000.2000.62433
      SiamGAT0.0250.8770.4140.0260.4120.5020.7900.88642
      SiamSA0.4390.2430.0050.1340.0420.5930.0780.80539
      SmallTrack0.0240.7600.3370.0740.3430.4430.6890.569588
      Ours0.8440.9820.9400.4390.9860.8281.0000.824105
    • Table 3. Quantitative comparison results (precision)

      View table
      View in Article

      Table 3. Quantitative comparison results (precision)

      AlgorithmsSeq1Seq2Seq3Seq4Seq5Seq6Seq7Seq8Speed/frame·s–1
      MOSSE0.0290.1430.3700.0730.0610.8530.3710.883580
      CSK0.0560.0140.4640.0300.1080.4580.2420.069430
      BACF0.0140.0840.4620.0290.0600.0890.2930.91583
      DSST0.0580.0860.4530.0280.0620.5150.3150.907145
      KCF0.0140.4050.4650.0290.0710.4750.6730.068502
      ECO0.9180.1400.4610.0280.0680.8650.2910.94090
      SiamBAN0.0350.6690.4240.1610.0520.9150.8140.94864
      SiamCAR0.0330.9070.4690.0620.6220.8250.3841.00033
      SiamGAT0.0250.9200.4210.0690.5220.4721.0000.96742
      SiamSA0.4160.2860.0170.1490.0420.6250.3381.00039
      SmallTrack0.0370.9490.5650.0940.5770.5960.9560.969588
      Ours0.8550.9280.9930.6040.9940.8971.0000.995105
    • Table 4. The success rate (IOU≥0.5) and precision (P ≤ 5 pixel) of different backbone networks

      View table
      View in Article

      Table 4. The success rate (IOU≥0.5) and precision (P ≤ 5 pixel) of different backbone networks

      Average SRAverage PRE
      Alexnet0.3170.495
      Resnet180.5750.750
      Resnet500.4490.596
      Our backbone0.7020.782
    • Table 5. The effectiveness of each proposed module in improving tracking performance

      View table
      View in Article

      Table 5. The effectiveness of each proposed module in improving tracking performance

      DTFEMSAATUAverage SRAverage PRE
      Baseline0.7020.782
      0.7490.823
      0.7300.814
      0.7620.831
      0.8040.862
      0.8070.862
      0.8030.868
      0.8550.915
    • Table 6. Quantitative analysis of performance indicators under scale and attitude changes

      View table
      View in Article

      Table 6. Quantitative analysis of performance indicators under scale and attitude changes

      SceneAverage SRAverage PRE
      Scale change0.8510.902
      Posture change0.8900.911
    Tools

    Get Citation

    Copy Citation Text

    Tianlei MA, Xinhao LIU, Jinzhu PENG, Zhiqiang KAI, Hao WANG. Adaptive tracking method for infrared small targets in dynamic and complex scenes (invited)[J]. Infrared and Laser Engineering, 2025, 54(3): 20240496

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical imaging, display and information processing

    Received: Oct. 31, 2024

    Accepted: --

    Published Online: Apr. 8, 2025

    The Author Email: Jinzhu PENG (jzpeng@zzu.edu.cn)

    DOI:10.3788/IRLA20240496

    Topics