Chinese Journal of Lasers, Volume. 36, Issue 12, 3093(2009)

Diffractive Multi-beam Ultra-fast Laser Micro-processing Using a Spatial Light Modulator(Invited Paper)

Zheng Kuang, Dun Liu**, Walter Perrie, Jian Cheng, Shuo Shang, S. P., E. Fearon, G. Dearden, and K. G.
Author Affiliations
  • Laser Group,Department of Engineering,University of Liverpool,Brownlow Street,Liverpool,L69 3GQ,UK
  • show less
    References(80)

    [1] [1] D. Du,X. Liu,G. Korn et al.. Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs[J]. Appl. Phys. Lett.,1994,64:3071-3073

    [2] [2] X. Liu,D. Du,G. Mourou. Laser ablation and micromachining with ultrashort laser pulses[J]. IEEE J. Quantum Electron.,1997,33:1706-1716

    [3] [3] B. N. Chichkov,C. Momma,S. Nolte et al.. femto-second,picosecond and nanosecond laser ablation of solids[J]. Appl. Phys. A,1996,63:109-115

    [4] [4] F. Dausinger. Machining of metals with ultrashort laser pulses:from fundamental investigations to industrial applications[C]. SPIE,2005,5777:840

    [5] [5] A. Baum,P. J. Scully,W. Perrie et al.. Pulse-duration dependency of femtosecond laser refractive index modification in poly(methyl methacrylate)[J]. Opt. Lett.,2008,33:651-653

    [6] [6] H. Guo,H. Jiang,Y. Fang et al.. The pulse duration dependence of femtosecond laser induced refractive index modulation in fused silica[J]. J. Opt. A:Pure Appl. Opt.,2004,6:787-790

    [7] [7] A. Baum,P. J. Scully,M. Basanta et al.. Photochemistry of refractive index structures in poly(methyl methacrylate) by femtosecond laser irradiation[J]. Opt. Lett.,2007,32:190-192

    [8] [8] R. Le. Harzic,D. Breitlung,M. Weikert et al.. Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps[J]. Appl. Surf. Sci.,2005,249:322-331

    [9] [9] W. Perrie,M. Gill,G. Robinson et al.. Femtosecond laser microstructuring of aluminium under helium[J]. Appl. Surf. Sci.,2004,230:50-59

    [10] [10] A. Luft,U. Franz,A. Emsemann et al.. A study of thermal and mechanical effects on materials induced by pulsed laser drilling[J]. Appl. Phys. A,1996,63:93-101

    [11] [11] K. Kawamura,T. Ogawa,N. Sarukura et al.. Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic method using infrared femtosecond laser pulses[J]. Appl. Phys. B,2000,71:119-121

    [12] [12] T. Kondo,S. Matsuo,S. Juodkazis et al.. A novel femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals[J]. Appl. Phys. Lett.,2001,79:725-727

    [13] [13] T. Kondo,S. Matsuo,S. Juodkazis et al.. Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses[J]. Appl. Phys. Lett.,2003,82:2758-2760

    [14] [14] S. Yang,M. Megens,J. Aizenberg et al.. Creating periodic three-dimensional structures by multibeam interference of visible laser[J]. Chem. Mater.,2002,14:2831-2833

    [15] [15] H. Misawa,T. Kondo,S. Juodkazis et al.. Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8[J]. Opt. Express,2006,14:7943-7953

    [16] [16] S. Shoji,R. Zaccaria,H. B. Sun et al.. Multi-step multi-beam laser interference patterning of three-dimensional photonic lattices[J]. Opt. Express,2006,14:2309-2316

    [17] [17] S. Shoji,S. Kawata. Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin[J]. Appl. Phys. Lett.,2000,76:2668-2670

    [18] [18] S. Shoji,H. B. Sun,S. Kawata. Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference[J]. Appl. Phys. Lett.,2003,83:608-610

    [19] [19] M. Campbell,D. N. Sharp,M. T. Harrison et al.. Fabrication of photonic crystals for the visible spectrum by holographic lithography[J]. Nature,2000,404:53-56

    [20] [20] Y. Li,W. Watanabe,K. Yamada et al.. Holographic fabrication of multiple layers of grating inside soda-lime glass with femtosecond laser pulses[J]. Appl. Phys. Lett.,2002,80:1508-1510

    [21] [21] K. Venkatakrishnan,N. R. Sivakumar,C. W. Hee et al.. Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser[J]. Appl. Phys. A,2003,77:959-963

    [22] [22] Y. Nakata,T. Okada,M. Maeda. Nano-sized hollow bump array generated by single femtosecond laser pulse[J]. Jpn. J. Appl. Phys.,2003,42:L1452-L1454

    [23] [23] Y. Nakata,T. Okada,M. Maeda. Fabrication of dot matrix,comb,and nanowire structures using laser ablation by interfered femtosecond laser beams[J]. Appl. Phys. Lett.,2002,81:4239-4241

    [24] [24] Y. Nakata,T. Okada,M. Maeda. Formation of periodic structure inside silica glass and acryl by interfering femtosecond laser[J]. Jpn. J. Appl. Phys.,2003,42:L379-L380

    [25] [25] Y. Nakata,T. Okada,M. Maeda. Lines of periodic hole structures produced by laser ablation using interfering femtosecond lasers split by a transmission grating[J]. Appl. Phys. A,2003,77:399-401

    [26] [26] S. Matsuo,T. Miyamoto,T. Tomita et al.. Applications of a microlens array and a photomask to the laser microfabrication of a periodic photopolymer rod array[J]. Appl. Opt.,2007,46:8264-8267

    [27] [27] M. Oikawa,K. Iga. Distributed-index planar microiens[J]. Appl. Opt.,1982,21:1052-1056

    [28] [28] S. Matsuo,S. Juodkazis,H. Misawa. Femtosecond laser microfabrication of periodic structures using a microlens array[J]. Appl. Phys. A,2005,80:683-685

    [29] [29] J. Kato,N. Takeyasu,Y. Adachi et al.. Multiple-spot parallel processing for laser micronanofabrication[J]. Appl. Phys. Lett.,2005,86:044102-044104

    [30] [30] C. H. Sow,A. A. Bettiol,Y. Y. G. Lee et al.. Multiple-spot optical tweezers created with microlens arrays fabricated by proton beam writing[J]. Appl. Phys. B,2004,78:705-710

    [31] [31] Z. B. Wang,W. Guo,A. Pena et al.. Laser micro/nano fabrication in glass with tunable-focus particle lens array[J]. Opt. Express,2008,16:19706-19711

    [32] [32] Y. Hayasaki,T. Sugimoto,A. Takita et al.. Variable holographic femtosecond laser processing by use of a spatial light modulator[J]. Appl. Phys. Lett.,2005,87:031101-031103

    [33] [33] S. Hasegawa,Y. Hayasaki,N. Nishida. Holographic femtosecond laser processing with multiplexed phase Fresnel lenses[J]. Opt. Lett.,2006,31:1705-1707

    [34] [34] Y. Kuroiwa,N. Takeshima,Y. Narita et al.. Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements[J]. Opt. Express,2004,12:1908-1915

    [35] [35] H. Takahashi,S. Hasegawa,Y. Hayasaki. Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator[J]. Appl. Opt.,2007,46:5917-5923

    [36] [36] H. Takahashi,S. Hasegawa,A. Takita et al.. Sparse-exposure technique in holographic two-photon polymerization[J]. Opt. Express,2008,16:16592-16599

    [37] [37] Y. Hayasaki. Holographic femtosecond laser processing and three-dimensional recording in biological tissues[C]. Progress In Electromagnetics Research Letters,2008,2:115-123

    [38] [38] S. Hasegawa,Y. Hayasaki. Holographic femtosecond laser processing with multiplexed phase fresnel lenses displayed on the liquid crystal spatial light modulator[J]. Opt. Rev.,2007,14:208-213

    [39] [39] K. Chaen,H. Takahashi,S. Hasegawa et al.. Display method with compensation of the spatial frequency response of a liquid crystal spatial light modulator for holographic femtosecond laser processing[J]. Opt. Commun.,2007,280:165-172

    [40] [40] Z. Kuang,W. Perrie,J. Leach et al.. High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator[J]. Appl. Surf. Sci.,2008,255:2284-2289

    [41] [41] Z. Kuang,D. Liu,W. Perrie et al.. Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring[J]. Appl. Surf. Sci.,2009,255:6582-6588

    [42] [42] Z. Kuang,W. Perrie,D. Liu et al.. Diffractive multi-beam surface micro-processing using 10 ps laser pulses[J]. Appl. Surf. Sci.,2009,255:9040-9044

    [43] [43] D. Liu,Z. Kuang,S. Shang et al.. ultra-fast parallel laser processing of materials for high throughput manufacturing[C]. Proceedings of LAMP2009--the 5th International Congress on Laser Advanced Materials Processing,2009,Kobe,Japan

    [44] [44] http:∥www.holoeye.com/spatial_light_modulator_lc_r_2500.html accessed in September 2009

    [45] [45] http:∥jp.hamamatsu.com/products/division/crl/1010/X10468/index_en.html accessed in Septermber 2009

    [46] [46] U. Efron. Spatial light modulator technology:materials,devices,and applications,Marcel Dekker,Inc. 1995

    [47] [47] I. C. Khoo. Liquid crystals[M]. John Wiley & Sons. Inc. 2nd edition,2007

    [48] [48] Phase and amplitude modulation properties of the LC-R 2500,Manual of Holoeye SLM (LC-R2500)

    [49] [49] J. Leach,G. Sinclair,P. Jordan et al.. 3D manipulation of particles into crystal structures using holographic optical tweezers[J]. Opt. Express,2004,12:220-226

    [50] [50] G. Sinclair,J. Leach,P. Jordan et al.. Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping[J]. Opt. Express,2004,12:1665-1670

    [51] [51] G. Whyte,G. Gibson,J. Leach et al.. An optical trapped microhand for manipulating micron-sized objects[J]. Opt. Express,2006,14:2497-12502

    [52] [52] M. Reicherter,S. Zwick,T. Haist et al.. Fast digital hologram generation and adaptive force measurement in liquid-crystal-display-based holographic tweezers[J]. Appl. Opt.,2006,45:888-896

    [53] [53] J. Leach,K. Wulff,G. Sinclair et al.. Interactive approach to optical tweezers control[J]. Appl. Opt.,2006,45:897-903

    [54] [54] J. Liesener,M. Reicherter,T. Haist et al.. Multi-functional optical tweezers using computer-generated holograms[J]. Opt. Commun.,2000,185:77-82

    [55] [55] G. Gibson,D. M. Carberry,G. Whyte et al.. Holographic assembly workstation for optical manipulation[J]. J. Opt. A:Pure Appl. Opt.,2008,10:044009

    [56] [56] J. A. Grieve,A. Ulcinas,S. Subramanian et al.. Hands-on with optical tweezers:a multitouch interface for holographic optical trapping[J]. Opt. Express,2009,17:3595-3602

    [57] [57] P. Jordan,J. Leach,M. Padgett et al.. Creating permanent 3D arrangements of isolated cells using holographic optical tweezers[J]. Lab on a Chip,2005,5:1224-1228

    [58] [58] M. Reicherter,T. Haist,E. U. Wagemann et al.. Optical particle trapping with computer-generated holograms written on a liquid-crystal display[J]. Opt. Lett.,1999,24:608-610

    [59] [59] A. Horst,N. R. Forde. Calibration of dynamic holographic optical tweezers for force measurements on biomaterials[J]. Opt. Express,2008,16:20987-21003

    [60] [60] P. C. Mogensen,J. Glückstad. Dynamic array generation and pattern formation for optical tweezers[J]. Opt. Commun.,2000,175:75-81

    [61] [61] G. Sinclair,P. Jordan,J. Leach et al.. Defining the trapping limits of holographical optical tweezers[J]. J. Mod. Opt.,2002,51:409-414

    [62] [62] H. Melville,G. Milne,G. Spalding et al.. Optical trapping of three-dimensional structures using dynamic holograms[J]. Opt. Express,2003,11:3562-3567

    [63] [63] J. E. Curtis,B. A. Koss,D. G. Grier. Dynamic holographic optical tweezers[J]. Opt. Commun.,2002,207:169-175

    [64] [64] D. G. Grier. A revolution in optical manipulation[J]. Nature,2003,424:810-816

    [65] [65] O. Samek,V. Hommes,R. Hergenrder et al.. Femtosecond pulse shaping using a liquid-crystal display:applications to depth profiling analysis[J]. Rev. Sci. Instrum.,2005,76:086104

    [66] [66] A. M. Weiner. Femtosecond pulse shaping using spatial light modulators[J]. Rev. Sci. Instrum.,2000,71:1929-1960

    [67] [67] R. W. Gerchberg,W. O. Saxton. A practical algorithm for the determination of the phase from image and diffraction plane pictures[J]. Optik,1972,35:237-246

    [68] [68] J. E. Curtis,C. H. J. Schmitz,J. P. Spatz. Symmetry dependence of holograms for optical trapping[J]. Opt. Lett.,2005,30:2086-2088

    [69] [69] T. Haist,E. U. Wagemann,H. J. Tiziani. Pulsed-laser ablation using dynamic computer-generated holograms written into a liquid crystal display[J]. J. Opt. A:Pure Appl. Opt.,1999,1(3):428-430

    [70] [70] T. Haist,M. Schnleber,H. J. Tiziani. Computer-generated holograms from 3D-objects written on twisted-nematic liquid crystals displays[J]. Opt. Commun.,1997,140:299-308

    [71] [71] P. J. Scully,D. Jones,D. A. Jaroszynski. Femtosecond laser irradiation of polymethyl methacrylate for refractive index gratings[J]. J. Opt. A,2003,5:S92-S96

    [72] [72] A. Zoubir,C. Lopez,M. Richardson et al.. Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate)[J]. Opt. Lett.,2004,29:1840-1842

    [73] [73] K. M. Davis,K. Miura,N. Sugimoto et al.. Writing waveguides in glass with a femtosecond laser[J]. Opt. Lett.,1996,21:1729-1731

    [74] [74] D. Homoelle,S. Wielandy,A. L. Gaeta et al.. Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses[J]. Opt. Lett.,1999,24:1311-1313

    [75] [75] D. Liu,Z. Kuang,W. Perrie et al.. High speed ultrafast 3D refractive index micro-structuring of poly(methyl methacrylate)[J],manuscript under preparation

    [76] [76] R. D. Leonardo,F. Ianni,G. Ruocco. Computer generation of optimal holograms for optical trap arrays[J]. Opt. Express,2007,15:1913-1922

    [77] [77] S. R. Forrest. The path to ubiquitous and low-cost organic electronic appliances on plastic[J]. Nature,2004,428:911-918

    [78] [78] C. Liu,G. Zhu,D. Liu. Patterning cathode for organic light-emitting diode by pulsed laser ablation[J]. Displays,2008,29:536-540

    [79] [79] P. J. Scully,A. Baum,D. Liu et al.. Part Ⅲ Chapter 12--Refractive index structures in polymers,Springer book--Femtosecond laser micromachining:photonic and microfluidic devices in transparent materials. To be published in 2010

    [80] [80] H. Kogelnik. Coupled Wave Theory for Thick Hologram Gratings[J]. Bell Syst. Tech. J.,1969,48:2909

    Tools

    Get Citation

    Copy Citation Text

    Zheng Kuang, Dun Liu*, Walter Perrie, Jian Cheng, Shuo Shang, S. P., E. Fearon, G. Dearden, K. G.. Diffractive Multi-beam Ultra-fast Laser Micro-processing Using a Spatial Light Modulator(Invited Paper)[J]. Chinese Journal of Lasers, 2009, 36(12): 3093

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: micro and nano optics

    Received: Oct. 28, 2009

    Accepted: --

    Published Online: Dec. 18, 2009

    The Author Email: Liu* Dun (dun.liu@liv.ac.uk)

    DOI:10.3788/cjl20093612.3093

    Topics