Journal of the Chinese Ceramic Society, Volume. 53, Issue 4, 948(2025)
Simulation of Solid State Dye-Sensitized Solar Cells
[1] [1] KHAN M, IQBAL M A, MALIK M, et al. Improving the efficiency of dye-sensitized solar cells based on rare-earth metal modified bismuth ferrites[J]. Sci Rep, 2023, 13(1): 3123.
[2] [2] NAJM A S, ALI ALWASH S, SULAIMAN N H, et al. N719 dye as a sensitizer for dye-sensitized solar cells (DSSCs): A review of its functions and certain rudimentary principles[J]. Env Prog And Sustain Energy, 2023, 42(1): e13955.
[3] [3] YADAGIRI B, KUMAR KALIAMURTHY A, YOO K, et al. Molecular engineering of photosensitizers for solid-state dye-sensitized solar cells: Recent developments and perspectives[J]. ChemistryOpen, 2023, 12(12): e202300170.
[5] [5] BARRIT D.In situInvestigation of the effect of solvation state of lead iodide and the influence of different cations and halides on the two-step hybrid perovskite solar cells formation[D]. Thuwal, Kingdom of Saudi Arabia: King Abdullah University of Science and Technology, 2019
[6] [6] OJOTU K,BABAJI G. Simulation of an optimized poly 3-Hexylthiophene (P3HT) based solid state dye sensitized solar cell (ss-DSSC) using SCAPS[J]. Int J Mod Res Eng Technol, 2020, 5: 1–10.
[7] [7] NOORASID N S, ARITH F, FIRHAT A Y, et al. SCAPS numerical analysis of solid-state dye-sensitized solar cell utilizing copper (I) iodide as hole transport layer[J]. Eng J, 2022, 26(2): 1–10.
[8] [8] SONG J X, YIN X X, HU L, et al. Plasmon-coupled Au-nanochain functionalized PEDOT: PSS for efficient mixed tin–lead iodide perovskite solar cells[J]. Chem Commun, 2022, 58(9): 1366–1369.
[9] [9] KORIR B K, KIBET J K, NGARI S M. Simulated performance of a novel solid-state dye-sensitized solar cell based on phenyl-C61-butyric acid methyl ester (PC61BM) electron transport layer[J]. Opt Quantum Electron, 2021, 53(7): 368.
[10] [10] SHUM K, CHEN Z, QURESHI J, et al. Synthesis and characterization of CsSnI3 thin films[J]. Appl Phys Lett, 2010, 96(22): 221903.
[11] [11] BEILEY Z M, MCGEHEE M D. Modeling low cost hybrid tandem photovoltaics with the potential for efficiencies exceeding 20%[J]. Energy Environ Sci, 2012, 5(11): 9173–9179.
[12] [12] MADAN J, GARG S, GUPTA K, et al. Numerical simulation of charge transport layer free perovskite solar cell using metal work function shifted contacts[J]. Optik, 2020, 202: 163646.
[13] [13] BURGELMAN M, DECOCK K, KHELIFI S, et al. Advanced electrical simulation of thin film solar cells[J]. Thin Solid Films, 2013, 535: 296–301.
[14] [14] AICHOUBA M. Solar cell parameters extraction optimization using Lambert function[J]. Przeglad Elektrotechniczny, 2019, 1(4): 229–233.
[15] [15] SHAFI M A, KHAN L, ULLAH S, et al. Novel compositional engineering for ~26% efficient CZTS-perovskite tandem solar cell[J]. Optik, 2022, 253: 168568.
[16] [16] GUPTA P. Band alignment studies of Zn1-xNixO/ZnO: As bilayer electron transport layer in perovskite solar cells[J]. Opt Mater, 2024, 150: 115305.
[17] [17] DINIZ ARAJO V H, NOGUEIRA A F, TRISTO J C, et al. Fullerene-C60 and PCBM as interlayers in regular and inverted lead-free PSCs using CH3NH3SnI3: An analysis of device performance and defect density dependence by SCAPS-1D[J]. RSC Adv, 2024, 14(16): 10930–10941.
[18] [18] ALIYASELVAM O. Optimization of copper(I) thiocyanate as hole transport material for solar cell by scaps-1D numerical analysis[J]. PRZEGLD ELEKTROTECHNICZNY, 2022, 1(6): 133–137.
[19] [19] JAHANTIGH F, SAFIKHANI M J. The effect of HTM on the performance of solid-state dye-sanitized solar cells (SDSSCs): A SCAPS-1D simulation study[J]. Appl Phys A, 2019, 125(4): 276.
[20] [20] KORIR B K, KIBET J K, NGARI S M. Computational simulation of a highly efficient hole transport-free dye-sensitized solar cell based on titanium oxide (TiO2) and zinc oxysulfide (ZnOS) electron transport layers[J]. J Electron Mater, 2021, 50(12): 7259–7274.
[21] [21] ABDELAZIZ W, SHAKER A, ABOUELATTA M, et al. Possible efficiency boosting of non-fullerene acceptor solar cell using device simulation[J]. Opt Mater, 2019, 91: 239–245.
[22] [22] PATEL M J, GUPTA S K, GAJJAR P N. Electronic structure and optical properties of -CuSCN: A DFT study[J]. Mater Today Proc, 2020, 28: 164–167.
[23] [23] HOSSAIN M K, MOHAMMED M K A, PANDEY R, et al. Numerical analysis in DFT and SCAPS-1D on the influence of different charge transport layers of CsPbBr3 perovskite solar cells[J]. Energy Fuels, 2023, 37(8): 6078–6098.
[25] [25] KARTHICK S, VELUMANI S, BOUCL J. Chalcogenide BaZrS3 perovskite solar cells: A numerical simulation and analysis using SCAPS-1D[J]. Opt Mater, 2022, 126: 112250.
[26] [26] AGRAWAL A, SIDDIQUI S A, SONI A, et al. Performance analysis of TiO2 based dye sensitized solar cell prepared by screen printing and doctor blade deposition techniques[J]. Sol Energy, 2021, 226: 9–19.
[27] [27] DERRY G N, KERN M E, WORTH E H. Recommended values of clean metal surface work functions[J]. J Vac Sci Technol A Vac Surf Films, 2015, 33(6): 060801.
Get Citation
Copy Citation Text
CHENG Youliang, ZHANG Zhongbao. Simulation of Solid State Dye-Sensitized Solar Cells[J]. Journal of the Chinese Ceramic Society, 2025, 53(4): 948
Category:
Received: Sep. 19, 2024
Accepted: May. 29, 2025
Published Online: May. 29, 2025
The Author Email: