Laser & Infrared, Volume. 54, Issue 11, 1784(2024)

A cloud detection method for MODIS based on multiscale attention

ZHANG Yu-hui1,2, BIAN Zhi-qiang1,3、*, and WEI Qian-ru4
Author Affiliations
  • 1Shanghai Institute of Satellite Engineering, Shanghai 201109, China
  • 2National Elite Institute of Engineering, Northwestern Polytechnical University, Xi'an 710129, China
  • 3College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
  • 4School of Software, Northwestern Polytechnical University, Xi'an 710129, China
  • show less
    References(13)

    [5] [5] Le Goff M, Tourneret J Y, Wendt H, et al. Deep learning for cloud detection[C]//8th International Conference of Pattern Recognition Systems (ICPRS 2017), IET, 2017: 1-6.

    [6] [6] Shi M, Xie F, Zi Y, et al. Cloud detection of remote sensing images by deep learning[C]//2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE, 2016: 701-704.

    [7] [7] Kingma D P, Welling M. An introduction to variational autoencoders[J]. Foundations and Trends ® in Machine Learning, 2019, 12(4): 307-392.

    [8] [8] Yan Z, Yan M, Sun H, et al. Cloud and cloud shadow detection using multilevel feature fused segmentation network[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(10): 1600-1604.

    [9] [9] Wang F, Jiang M, Qian C, et al. Residual attention network for image classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 3156-3164.

    [10] [10] Wang P, Chen P, Yuan Y, et al. Understanding convolution for semantic segmentation[C]//2018 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2018: 1451-1460.

    [12] [12] Shaw P, Uszkoreit J, Vaswani A. Self-attention with relative position representations[J]. arXiv preprint arXiv: 1803.02155, 2018.

    [13] [13] Fan T, Wang G, Li Y, et al. Ma-net: A multi-scale attention network for liver and tumor segmentation[J]. IEEE Access, 2020, 8: 179656-179665.

    [14] [14] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, part III 18. Springer International Publishing, 2015: 234-241.

    [15] [15] Wu W, Zhang Y, Wang D, et al. SK-Net: Deep learning on point cloud via end-to-end discovery of spatial keypoints[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2020, 34(4): 6422-6429.

    [16] [16] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition., 2015: 1-9.

    [17] [17] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.

    [18] [18] Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Yu-hui, BIAN Zhi-qiang, WEI Qian-ru. A cloud detection method for MODIS based on multiscale attention[J]. Laser & Infrared, 2024, 54(11): 1784

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 23, 2024

    Accepted: Jan. 14, 2025

    Published Online: Jan. 14, 2025

    The Author Email: BIAN Zhi-qiang (15925802118@163.com)

    DOI:10.3969/j.issn.1001-5078.2024.11.020

    Topics