Chinese Journal of Liquid Crystals and Displays, Volume. 40, Issue 3, 516(2025)

Few-shot wildlife detection based on multi-scale context extraction

Ke LIU1,2, Shanling LIN1,2, Xinyu SHI1,2, Jianpu LIN1,2, Shanhong LÜ1,2, Zhixian LIN1,2、*, and Tailiang GUO2
Author Affiliations
  • 1School of Advanced Manufacturing, Fuzhou University,Quanzhou 362251, China
  • 2Fujian Science and Technology Innovation Laboratory for Photoelectric Information, Fuzhou 350116, China
  • show less
    Figures & Tables(14)
    Network framework of the MS-FSWD
    Architecture of MSCE
    Architecture of SA-RPN
    Architecture of Shuffle attention
    Prototypical calibration block
    Examples of FSWA dataset. (a) Leopard;(b) Ostrich; (c) Panda; (d) Rhinoceros; (e) Kangaroo.
    Comparison of loss functions
    Comparison of some test results. (a) TFA; (b) FSDetView; (c) FSCE; (d) DeFRCN; (e) VFA; (f) MS-FSWD.
    • Table 1. FSWA dataset statistics

      View table
      View in Article

      Table 1. FSWA dataset statistics

      动物种类图像数量实例数量
      Bird8131 288
      Cat1 1271 276
      Cow340771
      Dog1 3411 598
      Horse526803
      Sheep3571 084
      Leopard260298
      Ostrich224307
      Panda129157
      Rhinoceros225306
      Kangaroo234369
    • Table 2. Experimental environment configuration

      View table
      View in Article

      Table 2. Experimental environment configuration

      名称配置信息
      操作系统Ubuntu 18.04
      GPUNVIDIA RTX 2080 Ti
      CPUIntel (R) Xeon (R) Platinum 8255 C CPU@2.50 GHz
      深度学习框架Pytorch-1.7.1
      PythonPython 3.8.17版本
    • Table 3. Experimental parameters configuration

      View table
      View in Article

      Table 3. Experimental parameters configuration

      名称配置信息
      批次大小4
      优化器SGD
      动量参数0.9
      基类训练阶段学习率0.005
      微调阶段学习率0.002 5
    • Table 4. Ablation experiments on the FSWA dataset

      View table
      View in Article

      Table 4. Ablation experiments on the FSWA dataset

      方法平衡L1损失改进的PCBSA-RPNMSCENovel AP50/%Novel AP/%
      123510123510
      DeFRCN××××59.372.274.078.481.029.739.643.045.248.4
      Ours×××62.373.175.178.181.631.541.544.545.149.5
      ×××68.275.278.880.082.534.241.546.345.649.3
      ×××62.473.475.277.581.231.041.344.944.848.7
      ×××61.572.973.779.082.030.542.943.946.350.7
      ××69.275.378.680.482.435.442.146.345.448.8
      ×68.476.678.880.982.733.942.445.746.248.7
      69.278.280.682.884.235.345.148.748.450.9
    • Table 5. Experimental results of different algorithms based on FSWA dataset

      View table
      View in Article

      Table 5. Experimental results of different algorithms based on FSWA dataset

      MethodsNovel AP50/%Novel AP/%
      1-shot2-shot3-shot5-shot10-shot1-shot2-shot3-shot5-shot10-shot
      TFA1329.231.233.539.346.513.519.520.623.327.7
      FSDetView2513.525.638.355.064.65.49.521.127.635.0
      FSCE1418.432.545.459.569.79.618.526.534.242.7
      DeFRCN1559.372.274.078.481.029.739.643.045.248.4
      VFA2639.855.862.570.072.515.521.525.829.036.1
      MS-FSWD(Ours)69.278.280.682.884.235.345.148.748.450.9
    • Table 6. Experimental results of different algorithms based on PASCAL VOC dataset

      View table
      View in Article

      Table 6. Experimental results of different algorithms based on PASCAL VOC dataset

      MethodsNovel Set 1Novel Set 2Novel Set 3
      1-shot2-shot3-shot5-shot10-shot1-shot2-shot3-shot5-shot10-shot1-shot2-shot3-shot5-shot10-shot
      FSRW1014.223.629.836.535.612.319.625.131.429.812.521.326.833.831.0
      TFA1325.336.442.147.952.818.327.530.934.139.517.927.234.340.845.6
      FSDetView2524.235.342.249.157.421.624.631.937.045.721.230.037.243.849.6
      FSCE1432.944.046.852.959.723.730.638.443.048.522.633.439.547.354.0
      DeFRCN1540.253.658.263.666.529.539.743.448.152.835.038.352.957.760.8
      FCT2738.549.653.559.864.325.934.240.144.947.434.743.949.353.156.3
      VFA2647.454.458.564.566.533.738.243.548.352.443.848.953.358.160.0
      MS-FSWD(Ours)43.155.059.965.067.334.542.146.550.753.838.350.955.660.463.3
    Tools

    Get Citation

    Copy Citation Text

    Ke LIU, Shanling LIN, Xinyu SHI, Jianpu LIN, Shanhong LÜ, Zhixian LIN, Tailiang GUO. Few-shot wildlife detection based on multi-scale context extraction[J]. Chinese Journal of Liquid Crystals and Displays, 2025, 40(3): 516

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 11, 2024

    Accepted: --

    Published Online: Apr. 27, 2025

    The Author Email: Zhixian LIN (lzx2005000@163.com)

    DOI:10.37188/CJLCD.2024-0168

    Topics