Laser & Optoelectronics Progress, Volume. 57, Issue 8, 081103(2020)

Wavefront Restoration Method Based on Light Intensity Image Deep Learning

Huimin Ma*, Jun Jiao, Yan Qiao, Haiqiu Liu, and Yanwei Gao
Author Affiliations
  • College of Information and Computer, Anhui Agriculture University, Hefei, Anhui 230031, China
  • show less
    References(27)

    [1] Gerchberg R W, Saxton W O. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 35, 237-246(1972).

    [2] Misell L D . A method for the solution of the phase problem in electron microscopy[J]. Journal of Physics D: Applied Physics, 6, L6-L9(1973).

    [3] Gonsalves R A. Phase retrieval and diversity in adaptive optics[J]. Optical Engineering, 21, 829-832(1982).

    [5] Angel J R P, Wizinowich P, Lloyd-Hart M et al. Adaptive optics for array telescopes using neural-network techniques[J]. Nature, 348, 221-224(1990).

    [6] Sandler D G, Barrett T K, Palmer D A et al. Use of a neural network to control an adaptive optics system for an astronomical telescope[J]. Nature, 351, 300-302(1991).

    [7] Barrett T K, Sandler D G. Artificial neural network for the determination of Hubble Space Telescope aberration from stellar images[J]. Applied Optics, 32, 1720-1727(1993).

    [8] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. [C]∥Advances in Neural Information Processing Systems, December 3-6, 2012, Lake Tahoe, Nevada, United States. Canada: NIPS, 1097-1105(2012).

    [9] Simonyan K. -04-10)[2019-09-01]. https:∥arxiv.xilesou., top/abs/1409, 1556(2015).

    [10] Szegedy C, Liu W, Jia Y Q et al. Going deeper with convolutions. [C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. New York: IEEE, 15523970(2015).

    [11] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition. [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 770-778(2016).

    [15] Graves A, Mohamed A R, Hinton G. Speech recognition with deep recurrent neural networks. [C]∥2013 IEEE International Conference on Acoustics, Speech and Signal Processing, May 26-31, 2013, Vancouver, BC, Canada. New York: IEEE, 6645-6649(2013).

    [16] Nguyen T, Bui V, Lam V et al. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection[J]. Optics Express, 25, 15043-15057(2017).

    [17] Fei X, Zhao J L, Zhao H X et al. Deblurring adaptive optics retinal images using deep convolutional neural networks[J]. Biomedical Optics Express, 8, 5675-5687(2017).

    [18] Zhang G, Guan T, Shen Z Y et al. Fast phase retrieval in off-axis digital holographic microscopy through deep learning[J]. Optics Express, 26, 19388-19405(2018).

    [19] Park S R, Cattell L, Nichols J M et al. De-multiplexing vortex modes in optical communications using transport-based pattern recognition[J]. Optics Express, 26, 4004-4022(2018).

    [20] Lohani S, Glasser R T. Turbulence correction with artificial neural networks[J]. Optics Letters, 43, 2611-2614(2018).

    [21] Lohani S, Knutson E M. O'Donnell M, et al. On the use of deep neural networks in optical communications[J]. Applied Optics, 57, 4180-4190(2018).

    [22] Paine S W, Fienup J R. Machine learning for improved image-based wavefront sensing[J]. Optics Letters, 43, 1235-1238(2018).

    [23] Yang P, Ao M W, Liu Y et al. Intracavity transverse modes controlled by a genetic algorithm based on Zernike mode coefficients[J]. Optics Express, 15, 17051-17062(2007).

    [24] [M]. Deep learning, 100-128(2017).

         Goodfellow I, Goodfellow I, Bengio Y, Bengio Y, Courville A, Courville A[M]. 深度学习, 100-128(2017).

    [25] Roddier N A. Atmospheric wavefront simulation using Zernike polynomials[J]. Optical Engineering, 29, 1174-1180(1990).

    [26] Innes M. Flux: elegant machine learning with Julia[J]. Journal of Open Source Software, 3, 602(2018).

    Tools

    Get Citation

    Copy Citation Text

    Huimin Ma, Jun Jiao, Yan Qiao, Haiqiu Liu, Yanwei Gao. Wavefront Restoration Method Based on Light Intensity Image Deep Learning[J]. Laser & Optoelectronics Progress, 2020, 57(8): 081103

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Sep. 2, 2019

    Accepted: Sep. 12, 2019

    Published Online: Apr. 3, 2020

    The Author Email: Huimin Ma (huiminma@ahau.edu.cn)

    DOI:10.3788/LOP57.081103

    Topics