Acta Optica Sinica, Volume. 43, Issue 14, 1418001(2023)
Retinal Vessel Segmentation via Self-Adaptive Compensation Network
[1] Soomro T A, Khan T M, Khan M A U et al. Impact of ICA-based image enhancement technique on retinal blood vessels segmentation[J]. IEEE Access, 6, 3524-3538(2018).
[2] Fraz M M, Remagnino P, Hoppe A et al. Blood vessel segmentation methodologies in retinal images-a survey[J]. Computer Methods and Programs in Biomedicine, 108, 407-433(2012).
[3] Li T, Bo W, Hu C Y et al. Applications of deep learning in fundus images: a review[J]. Medical Image Analysis, 69, 101971(2021).
[4] Xue W X, Liu J X, Liu R et al. An improved method for retinal vascular segmentation in U-net[J]. Acta Optica Sinica, 40, 1210001(2020).
[5] Azzopardi G, Strisciuglio N, Vento M et al. Trainable COSFIRE filters for vessel delineation with application to retinal images[J]. Medical Image Analysis, 19, 46-57(2015).
[6] Neto L C, Ramalho G L B, Neto J F S R et al. An unsupervised coarse-to-fine algorithm for blood vessel segmentation in fundus images[J]. Expert Systems With Applications, 78, 182-192(2017).
[7] Staal J, Abràmoff M D, Niemeijer M et al. Ridge-based vessel segmentation in color images of the retina[J]. IEEE Transactions on Medical Imaging, 23, 501-509(2004).
[8] You X G, Peng Q M, Yuan Y et al. Segmentation of retinal blood vessels using the radial projection and semi-supervised approach[J]. Pattern Recognition, 44, 2314-2324(2011).
[9] Fu H Z, Xu Y W, Lin S et al. DeepVessel: retinal vessel segmentation via deep learning and conditional random field[M]. Ourselin S, Joskowicz L, Sabuncu M, et al. Medical image computing and computer-assisted intervention-MICCAI 2016. Lecture notes in computer science, 9901, 132-139(2016).
[10] Li L Z, Verma M, Nakashima Y et al. IterNet: retinal image segmentation utilizing structural redundancy in vessel networks[C], 3645-3654(2020).
[11] Guo C L, Szemenyei M, Yi Y G et al. SA-UNet: spatial attention U-net for retinal vessel segmentation[C], 1236-1242(2021).
[12] Zhang Y, He M, Chen Z N et al. Bridge-Net: context-involved U-net with patch-based loss weight mapping for retinal blood vessel segmentation[J]. Expert Systems With Applications, 195, 116526(2022).
[13] Dai J F, Qi H Z, Xiong Y W et al. Deformable convolutional networks[C], 764-773(2017).
[14] Zhu X Z, Hu H, Lin S et al. Deformable ConvNets V2: more deformable, better results[C], 9300-9308(2020).
[15] Zhao H S, Shi J P, Qi X J et al. Pyramid scene parsing network[C], 6230-6239(2017).
[16] Luo W J, Han G Q, Tian X D. Retinal vessel segmentation method based on multi-scale attention analytic network[J]. Laser & Optoelectronics Progress, 58, 2017001(2021).
[17] Li X T, You A S, Zhu Z et al. Semantic flow for fast and accurate scene parsing[M]. Vedaldi A, Bischof H, Brox T, et al. Computer vision-ECCV 2020. Lecture notes in computer science, 12346, 775-793(2020).
[18] Huang Z L, Wei Y C, Wang X G et al. AlignSeg: feature-aligned segmentation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 550-557(2022).
[19] Cai Q H, Liu Y H, Zhang R F. Two-stage retinal vessel segmentation based on improved U-net[J]. Laser & Optoelectronics Progress, 58, 1617002(2021).
[20] Zhao F, Zhong B B, Liu H Q. Multi-scale residual U-Net fundus blood vessel segmentation based on attention mechanism[J]. Laser & Optoelectronics Progress, 59, 1810002(2022).
[21] Luo L, Xue D Y, Feng X L. Automatic segmentation of retinal vessel via compact mixed network[J]. Control and Decision, 37, 353-360(2022).
[22] Milletari F, Navab N, Ahmadi S A. V-net: fully convolutional neural networks for volumetric medical image segmentation[C], 565-571(2016).
[23] Chen L C, Papandreou G, Kokkinos I et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 834-848(2018).
[24] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[M]. Navab N, Hornegger J, Wells W, et al. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture notes in computer science, 9351, 234-241(2015).
[25] Gu Z W, Cheng J, Fu H Z et al. CE-net: context encoder network for 2D medical image segmentation[J]. IEEE Transactions on Medical Imaging, 38, 2281-2292(2019).
[26] Zhang Y, Fang J, Chen Y et al. Edge-aware U-net with gated convolution for retinal vessel segmentation[J]. Biomedical Signal Processing and Control, 73, 103472(2022).
[27] Zheng T Y, Tang C, Lei Z K. Multi-scale retinal vessel segmentation based on fully convolutional neural network[J]. Acta Optica Sinica, 39, 0211002(2019).
[28] Jin Q G, Meng Z P, Pham T D et al. DUNet: a deformable network for retinal vessel segmentation[J]. Knowledge-Based Systems, 178, 149-162(2019).
[29] Lü Y, Ma H, Li J N et al. Attention guided U-net with atrous convolution for accurate retinal vessels segmentation[J]. IEEE Access, 8, 32826-32839(2020).
[30] Wang B, Wang S P, Qiu S et al. CSU-net: a context spatial U-net for accurate blood vessel segmentation in fundus images[J]. IEEE Journal of Biomedical and Health Informatics, 25, 1128-1138(2021).
Get Citation
Copy Citation Text
Lin Zhang, Chuang Wu, Xinyu Fan, Chaoju Gong, Suyan Li, Hui Liu. Retinal Vessel Segmentation via Self-Adaptive Compensation Network[J]. Acta Optica Sinica, 2023, 43(14): 1418001
Category: Microscopy
Received: Feb. 27, 2023
Accepted: Apr. 6, 2023
Published Online: Jul. 13, 2023
The Author Email: Hui Liu (hui.liu@cumt.edu.cn)