Laser & Optoelectronics Progress, Volume. 61, Issue 24, 2437002(2024)

Low-Light Image Enhancement via Cross-Domain Feature Fusion

Bin Chen1,2、*, Keyuan Chen1, and Shiqian Wu1,2
Author Affiliations
  • 1School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, Hubei , China
  • 2Institute of Robotic and Intelligent System, Wuhan University of Science and Technology, Wuhan 430081, Hubei , China
  • show less
    Figures & Tables(16)
    Comparison of the output results of different architecture models and the proposed method. (a) Input image; (b) based on convolutional neural network; (c) based on Transformer; (d) proposed method
    The architecture of MFF-Net
    Details of long distance feature extraction module
    Details of patch feature extract module
    Details of global feature extraction module
    Details of image reconstruction module
    Low light input images
    Comparison of brightness enhancement effects. (a) SCI algorithm; (b) Zero-DCE algorithm; (c) MIRNet algorithm; (d) proposed algorithm; (e) normal light images
    Comparison of detail and color richness. (a) KinD algorithm; (b) KinD++ algorithm; (c) LIME algorithm; (d) Retinex-Net algorithm; (e) algorithm of this article; (f) normal light images
    Schematic diagrams of the ablation experiment structure. (a) Eliminate the GFE module; (b) eliminate the PFE module; (c) eliminate the GFE and PFE modules at the same time; (d) proposed method
    Comparison of boundary artifact elimination results. (a) Input low-light image; (b) Transformer method; (c) proposed method; (d) normal light images
    • Table 1. Comparison with existing low-light enhancement methods on LOL dataset

      View table

      Table 1. Comparison with existing low-light enhancement methods on LOL dataset

      MethodPSNRSSIMNIQE
      LIME18.77430.54154.7931
      JED15.90440.66325.1491
      SDD15.69460.62735.0913
      IB18.06910.62934.7231
      Zero-DCE16.03620.53145.1735
      EnGAN18.07120.68814.8135
      KinD16.90720.61934.9711
      DLN21.42710.76414.3165
      MIRNet23.19740.88204.6574
      Proposed method26.87450.88103.4131
    • Table 2. Comparison with existing low-light enhancement methods on SID dataset

      View table

      Table 2. Comparison with existing low-light enhancement methods on SID dataset

      MethodPSNRSSIMMPSNR
      EnGAN16.88550.511117.1380
      Zero-DCE14.98720.596415.3303
      Residual28.17000.777528.8690
      SID28.62180.780529.2902
      Proposed method31.24210.807931.9475
    • Table 3. Ablation study on LOL dataset

      View table

      Table 3. Ablation study on LOL dataset

      ModelPSNRSSIMNIQE
      Without GFE25.14380.87023.5306
      Without PFE and GFE25.96080.87653.4369
      Without PFE26.83510.88093.3208
      Proposed model26.87450.88103.4131
    • Table 4. Ablation study on SID dataset

      View table

      Table 4. Ablation study on SID dataset

      ModelPSNRSSIMNIQE
      Without GFE30.77150.80457.0191
      Without PFE and GFE30.51120.79637.1853
      Without PFE31.31290.80686.2744
      Proposed model31.24210.80796.2366
    • Table 5. Comparison of model parameters

      View table

      Table 5. Comparison of model parameters

      ModelMIRNetViTs-BaseSwin-BProposed model
      Image size512×512384×384224×224256×256
      Total params /10631.785.58834.8
      Total flops /109985.4855.415.47.58
      Saved model size /MB364393336139
    Tools

    Get Citation

    Copy Citation Text

    Bin Chen, Keyuan Chen, Shiqian Wu. Low-Light Image Enhancement via Cross-Domain Feature Fusion[J]. Laser & Optoelectronics Progress, 2024, 61(24): 2437002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Mar. 12, 2024

    Accepted: Apr. 25, 2024

    Published Online: Dec. 19, 2024

    The Author Email:

    DOI:10.3788/LOP240874

    CSTR:32186.14.LOP240874

    Topics