Frontiers of Optoelectronics, Volume. 15, Issue 2, 12200(2022)

Mode-locked ytterbium-doped fiber laser with zinc phthalocyanine thin film saturable absorber

Rawan S. M. Soboh1, Ahmed H. H. Al-Masoodi2, Fuad N. A. Erman11, Abtisam H. H. Al-Masoodi3, Bilal Nizamani1, Hamzah Arof1, Retna Apsari4、*, and Sulaiman Wadi Harun1,4
Author Affiliations
  • 1Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50630 Kuala Lumpur, Malaysia
  • 2Electronic and Telecommunication Engineering Department, College of Engineering, The American University of Kurdistan, Duhok 42001, Iraq
  • 3Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
  • 4Department of Physics, Faculty of Science and Technology, Airlangga University, 60115 Surabaya, Indonesia
  • show less
    References(73)

    [1] [1] Ismail, E.I., Kadir, N., Latiff, A.A., Arof, H., Harun, S.W.: Passively Q-switched erbium-doped fiber laser using quantum dots CdSe embedded in polymer film as saturable absorber. Opt. Quant. Electron. 51(6), 182 (2019)

    [2] [2] Muhammad, A.R., Zakaria, R., Wang, P., Ahmad, M.T., Rahim, H.R.A., Arof, H., Harun, S.W.: Q-switched fiber laser operating at 1 μm region with electron beam deposited titanium nanoparticles. Opt. Laser Technol. 120, 105702 (2019)

    [3] [3] Chernikov, S., Taylor, J.: Multigigabit/s pulse source based on the switching of an optical beat signal in a nonlinear fibre loop mirror. Electron. Lett. 29(8), 658–660 (1993)

    [4] [4] Guo, Y.X., Li, X.H., Guo, P.L., Zheng, H.R.: Supercontinuum generation in an Er-doped figure-eight passively mode-locked fiber laser. Opt. Express 26(8), 9893–9900 (2018)

    [5] [5] Yang, X., Yang, C.: Q-switched mode-locking in an erbium-doped femtosecond fiber laser based on nonlinear polarization rotation. Laser Phys. 19(11), 2106–2109 (2009)

    [6] [6] Al-Masoodi, A.H., Ahmad, F., Ahmed, M.H., Arof, H., Harun, S.W.: Q-switched ytterbium-doped fiber laser with topological insulator-based saturable absorber. Opt. Eng. (Redondo Beach, Calif.) 56(5), 056103 (2017)

    [7] [7] Nizamani, B., Jafry, A.A.A., Salam, S., Najm, M.M., Khudus, M.I.M.A., Hanafi, E., Harun, S.W.: Mechanical exfoliation of indium tin oxide as saturable absorber for Q-switched ytterbiumdoped and erbium-doped fiber lasers. Opt. Commun. 475, 126217 (2020)

    [8] [8] Luo, Z., Huang, Y., Zhong, M., Li, Y., Wu, J., Xu, B., Xu, H., Cai, Z., Peng, J., Weng, J.: 1-, 1.5-, and 2-μm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber. J. Lightwave Technol 32(24), 4077–4084 (2014)

    [9] [9] Nizamani, B., Jafry, A.A.A., Abdul Khudus, M.I.M., Rosol, A.H.A., Samsamnun, F.S.M., Kasim, N., Hanafi, E., Shuhaimi, A., Harun, S.W.: Mode-locked erbium-doped fiber laser via evanescent field interaction with indium tin oxide. Opt. Fiber Technol. 55, 102124 (2020)

    [10] [10] Alani, I., Ahmad, B.A., Ahmed, M.H.M., Latiff, A.A., Al-Masoodi, A.H.H., Lokman, M.Q., Harun, S.W.: Nanosecond mode-locked erbium doped fiber laser based on zinc oxide thin film saturable absorber. Indian J. Phys. 93(1), 93–99 (2019)

    [11] [11] Wu, K., Zhang, X., Wang, J., Li, X., Chen, J.: WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers. Opt. Express 23(9), 11453–11461 (2015)

    [12] [12] Wang, M., Chen, C., Huang, C., Chen, H.: Passively Q-switched Er-doped fiber laser using a semiconductor saturable absorber mirror. Optik (Stuttgart) 125(9), 2154–2156 (2014)

    [13] [13] Li, J., Luo, H.Y., He, Y.L., Liu, Y., Zhang, L., Zhou, K.M., Rozhin, A.G., Turistyn, S.K.: Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser. Laser Phys. Lett. 11(6), 065102 (2014)

    [14] [14] Li, S., Yin, Y., Ran, G., Ouyang, Q., Chen, Y., Tokurakawa, M., Lewis, E., Harun, S.W., Wang, P.: Dual-wavelength mode-locked erbium-doped fiber laser based on tin disulfide thin film as saturable absorber. J. Appl. Phys. 125(24), 243104 (2019)

    [15] [15] Li, S., Yi, Y., Yin, Y., Jiang, Y., Zhao, H., Du, Y., Chen, Y., Lewis, E., Farrell, G., Harun, S.W., Wang, P.: A microfiber knot incorporating a tungsten disulfide saturable absorber based multiwavelength mode-locked erbium-doped fiber laser. J. Lightwave Technol. 36(23), 5633–5639 (2018)

    [16] [16] Zhang, H., Tang, D.Y., Zhao, L.M., Bao, Q.L., Loh, K.P., Lin, B., Tjin, S.C.: Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion. Laser Phys. Lett. 7(8), 591–596 (2010)

    [17] [17] Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D.E., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    [18] [18] Zheng, Y., Tang, X., Wang, W., Jin, L., Li, G.: Large-size ultrathin α-Ga2S3 nanosheets toward high-performance photodetection. Adv. Func. Mater. 31(6), 2008307 (2021)

    [19] [19] Castellanos-Gomez, A., Vicarelli, L., Prada, E., Island, J.O., Narasimha-Acharya, K.L., Blanter, S.I., Groenendijk, D.J., Buscema, M., Steele, G.A., Alvarez, J.V., Zandbergen, H.W.: Isolation and characterization of few-layer black phosphorus. 2D Materials 1(2), 025001 (2014)

    [20] [20] Xu, M., Liang, T., Shi, M., Chen, H.: Graphene-like two-dimensional materials. Chem. Rev. 113(5), 3766–3798 (2013)

    [21] [21] Zhang, H., Lu, S.B., Zheng, J., Du, J., Wen, S.C., Tang, D.Y., Loh, K.P.: Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt. Express 22(6), 7249–7260 (2014)

    [22] [22] Cui, Y., Lu, F., Liu, X.: MoS2-clad microfibre laser delivering conventional, dispersion-managed and dissipative solitons. Sci. Rep. 6(1), 30524 (2016)

    [23] [23] Jiang, T., Yin, K., Wang, C., You, J., Ouyang, H., Miao, R., Zhang, C., Wei, K., Li, H., Chen, H., Zhang, R., Zheng, X., Xu, Z., Cheng, X., Zhang, H.: Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect. Photonics Res. 8(1), 78–90 (2020)

    [24] [24] Song, Y., Liang, Z., Jiang, X., Chen, Y., Li, Z., Lu, L., Ge, Y., Wang, K., Zheng, J., Lu, S., Ji, J.: Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Materials 4(4), 045010 (2017)

    [25] [25] Guo, B., Wang, S.H., Wu, Z.X., Wang, Z.X., Wang, D.H., Huang, H., Zhang, F., Ge, Y.Q., Zhang, H.: Sub-200 fs soliton modelocked fiber laser based on bismuthene saturable absorber. Opt. Express 26(18), 22750–22760 (2018)

    [26] [26] Li, P., Chen, Y., Yang, T., Wang, Z., Lin, H., Xu, Y., Li, L., Mu, H., Shivananju, B.N., Zhang, Y., Zhang, Q., Pan, A., Li, S., Tang, D., Jia, B., Zhang, H., Bao, Q.: Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers. ACS Appl. Mater. Interfaces. 9(14), 12759–12765 (2017)

    [27] [27] Zhang, Y., Lim, C.K., Dai, Z., Yu, G., Haus, J.W., Zhang, H., Prasad, P.N.: Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. Phys. Rep. 795, 1–51 (2019)

    [28] [28] Ge, Y., Zhu, Z., Xu, Y., Chen, Y., Chen, S., Liang, Z., Song, Y., Zou, Y., Zeng, H., Xu, S., Zhang, H., Fan, D.: Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices. Adv. Opt. Mater. 6(4), 1701166 (2018)

    [29] [29] Zhang, Y., Li, X., Qyyum, A., Feng, T., Guo, P., Jiang, J., Zheng, H.: PbS nanoparticles for ultrashort pulse generation in optical communication region. Part. Part. Syst. Charact. 35(11), 1800341 (2018)

    [30] [30] Li, X., Peng, J., Liu, R., Liu, J., Feng, T., Qyyum, A., Gao, C., Xue, M., Zhang, J.: Fe3O4 nanoparticle-enabled mode-locking in an erbium-doped fiber laser. Front. Optoelectron 13(2), 149–155 (2020)

    [31] [31] Li, X.H., Guo, Y.X., Ren, Y., Peng, J.J., Liu, J.S., Wang, C., Zhang, H.: Narrow-bandgap materials for optoelectronics applications. Front. Phys 17(1), 1–33 (2022)

    [32] [32] Nizamani, B., Jafry, A.A.A., Abdul Khudus, M.I.M., Memon, F.A., Shuhaimi, A., Kasim, N., Hanafi, E., Yasin, M., Harun, S.W.: Indium tin oxide coated D-shape fiber as saturable absorber for passively Q-switched erbium-doped fiber laser. Opt. Laser Technol. 124, 105998 (2020)

    [33] [33] Khazaeinezhad, R., Kassani, S.H., Hwanseong, J., Dong-Il, Y., Kyunghwan, O.: Ultrafast pulsed all-fiber laser based on tapered fiber enclosed by few-layer WS2 nanosheets. IEEE Photon. Technol. Lett. 27(15), 1581–1584 (2015)

    [34] [34] Liu, J., Zhao, F., Wang, H., Zhang, W., Hu, X., Li, X., Wang, Y.: Generation of dark solitons in erbium-doped fiber laser based on black phosphorus nanoparticles. Opt. Mater. 89, 100–105 (2019)

    [35] [35] Nizamani, B., Salam, S., Jafry, A.A.A., Zahir, N.M., Jurami, N., Abdul Khudus, M.I.M., Shuhaimi, A., Hanafi, E., Harun, S.W.: Indium tin oxide coated d-shape fiber as a saturable absorber for generating a dark pulse mode-locked laser. Chin. Phys. Lett. 37(5), 054202 (2020)

    [36] [36] Jali, M.H., Rahim, H.R.A., Ashadi, M.J.M., Thokchom, S., Harun, S.W.: Applied microfiber evanescent wave on ZnO nanorods coated glass surface towards temperature sensing. Sens Actuators A. Phys. 277, 103–111 (2018)

    [37] [37] Nizamani, B., Khudus, M.A., Hanafi, E., Harun, S.: D-shape fiber coated with indium tin oxide for temperature sensor application. IOP Conf. Ser. Mater. Sci. Eng. 854(1), 012016 (2020)

    [38] [38] Khaleel, W.A., Sadeq, S.A., Alani, I.A.M., Ahmed, M.H.M.: Magnesium oxide (MgO) thin film as saturable absorber for passively mode locked erbium-doped fiber laser. Opt. Laser Technol. 115, 331–336 (2019)

    [39] [39] Najm, M.M., Arof, H., Nizamani, B., Al-Hiti, A.S., Zhang, P., Yasin, M., Harun, S.W.: Ultra-short pulse generating in erbiumdoped fiber laser cavity with 8-Hydroxyquinolino cadmium chloride hydrate (8-HQCdCl2H2O) saturable absorber. J. Mod. Opt. 68(5), 237–245 (2021)

    [40] [40] Huang, B., Yi, J., Jiang, G., Miao, L., Hu, W., Zhao, C., Wen, S.: Passively Q-switched vectorial fiber laser modulated by hybrid organic–inorganic perovskites. Opt. Mater. Express 7(4), 1220– 1227 (2017)

    [41] [41] Salam, S., Harun, S.W., Al-Masoodi, A.H.H., Ahmed, M.H.M., Al-Masoodi, A.H.H., Alani, I.A.M., Abd Majid, W.H., Wong, W.R., Yasin, M.: Tris-(8-hydroxyquinoline) aluminium thin film as saturable absorber for passively Q-switched erbium-doped fibre laser. IET Optoelectron. 13(5), 247–253 (2019)

    [42] [42] Salam, S., Azooz, S.M., Nizamani, B., Najm, M.M., Harun, S.W.: Mode-locked laser at 1066 nm by using Alq3 as saturable absorber in all-fiber based cavity. Optik (Stuttgart) 219, 165179 (2020)

    [43] [43] Salam, S., Al-Masoodi, A.H.H., Al-Hiti, A.S., Al-Masoodi, A.H.H., Wang, P., Wong, W.R., Harun, S.W.: FIrpic thin film as saturable absorber for passively Q-switched and mode-locked erbium-doped fiber laser. Opt. Fiber Technol. 50, 256–262 (2019)

    [44] [44] Uyeda, N., Ashida, M., Suito, E.: Orientation overgrowth of condensed polycyclic aromatic compounds vacuum-evaporated onto cleaved face of mica. J. Appl. Phys. 36(4), 1453–1460 (1965)

    [45] [45] Martínez-Díaz, M.V., de la Torre, G., Torres, T.: Lighting porphyrins and phthalocyanines for molecular photovoltaics. Chem. Commun. 46(38), 7090–7108 (2010)

    [46] [46] Wohrle, D., Kreienhoop, L., Schnurpfeil, G., Elbe, J., Tennigkeit, B., Hiller, S., Schlettwein, D.: Investigations of n/p-junction photovoltaic cells of perylenetetracarboxylic acid diimides and phthalocyanines. J. Mater. Chem. 5(11), 1819–1829 (1995)

    [47] [47] Colussi, V.C., Feyes, D.K., Mulvihill, J.W., Li, Y.S., Kenney, M.E., Elmets, C.A., Oleinick, N.L., Mukhtar, H.: Phthalocyanine 4 (Pc4) photodynamic therapy of human OVCAR-3 tumor xenografts. Photochem. Photobiol. 69(2), 236–241 (1999)

    [48] [48] Canevari, T.C., Arguello, J., Francisco, M.S., Gushikem, Y.: Cobalt phthalocyanine prepared in situ on a sol–gel derived SiO2/SnO2 mixed oxide: Application in electrocatalytic oxidation of oxalic acid. J. Electroanalyt. Chem. (Lausanne, Switzerland) 609(2), 61–67 (2007)

    [49] [49] Senthilarasu, S., Velumani, S., Sathyamoorthy, R., Subbarayan, A., Ascencio, J.A., Canizal, G., Sebastian, P.J., Chavez, J.A., Perez, R.: Characterization of zinc phthalocyanine (ZnPc) for photovoltaic applications. Appl. Phys. A Mater. Sci. Process. 77(3–4), 383–389 (2003)

    [50] [50] Saleh, A., Hassan, A., Gould, R.: DC conduction processes and electrical parameters of the organic semiconducting zinc phthalocyanine, ZnPc, thin films. J. Phys. Chem. Solids 64(8), 1297–1303 (2003)

    [51] [51] Senthilarasu, S., Sathyamoorthy, R., Kulkarni, S.: Substrate temperature effects on structural orientations and optical properties of ZincPthalocyanine (ZnPc) thin films. Mater. Sci. Eng., B 122(2), 100–105 (2005)

    [52] [52] El-Nahass, M., Zeyada, H., Aziz, M., El-Ghamaz, N.: Structural and optical properties of thermally evaporated zinc phthalocyanine thin films. Opt. Mater. 27(3), 491–498 (2004)

    [53] [53] Novotny, M., Bulir, J., Bensalah-Ledoux, A., Guy, S., Fitl, P., Vrnata, M., Lancok, J., Moine, B.: Optical properties of zinc phthalocyanine thin films prepared by pulsed laser deposition. Appl. Phys. A Mater. Sci. Process. 117(1), 377–381 (2014)

    [54] [54] Saini, G.S., Singh, S., Kaur, S., Kumar, R., Sathe, V., Tripathi, S.K.: Zinc phthalocyanine thin film and chemical analyte interaction studies by density functional theory and vibrational techniques. J. Phys.: Condens. Matter 21(22), 225006 (2009)

    [55] [55] Novotny, M., Sebera, J., Bensalah-Ledoux, A., Guy, S., Bulír, J., Fitl, P., Vlcek, J., Zákutná, D., Maresová, E., Hubík, P., Kratochvílová, I., Vrňata, M., Lancok, J.: The growth of zinc phthalocyanine thin films by pulsed laser deposition. J. Mater. Res. 31(1), 163–172 (2016)

    [56] [56] Socol, M., Preda, N., Stanculescu, A., Stanculescu, F., Socol, G.: Heterostructures based on porphyrin/phthalocyanine thin films for organic device applications. In: Yilmaz, Y. (ed.) Phthalocyanines and Some Current Applications, p. 85. IntechOpen, Croatia (2017)

    [57] [57] Gaffo, L., Cordeiro, M.R., Freitas, A.R., Moreira, W.C., Girotto, E.M., Zucolotto, V.: The effects of temperature on the molecular orientation of zinc phthalocyanine films. J. Mater. Sci. 45(5), 1366–1370 (2010)

    [58] [58] Soboh, R.S., Al-Masoodi, A.H., Erman, F.N., Al-Masoodi, A.H., Yasin, M., Harun, S.W.: Passively Q-switched ytterbiumdoped fiber laser using zinc phthalocyanine thin film as saturable absorber. Optik 228, 165736 (2021)

    [59] [59] Hamam, K.J., Alomari, M.I.: A study of the optical band gap of zinc phthalocyanine nanoparticles using UV–Vis spectroscopy and DFT function. Appl. Nanosci. 7(5), 261–268 (2017)

    [60] [60] Hussein, M.T., Kadhim, M.J.H.: Spectroscopic and structural properties of zinc-phthalocyanine prepared by pulsed laser deposition. J. Phys. Conf. Ser. 1178(1), 012031 (2019)

    [61] [61] Ramya, E., Momen, N., Rao, D.N.: Preparation of multiwall carbon nanotubes with zinc phthalocyanine hybrid materials and their nonlinear optical (NLO) properties. J. Nanosci. Nanotechnol. 18(7), 4764–4770 (2018)

    [62] [62] Saini, R., Mahajan, A., Bedi, R., Aswal, D., Debnath, A.: Solution processed films and nanobelts of substituted zinc phthalocyanine as room temperature ppb level Cl2 sensors. Sens. Actuators B. Chem. 198, 164–172 (2014)

    [63] [63] Li, Q., Wei, C., Chi, H., Zhou, L., Zhang, H., Huang, H., Liu, Y.: Au nanocages saturable absorber for 3-μm mid-infrared pulsed fiber laser with a wide wavelength tuning range. Opt. Express 27(21), 30350–30359 (2019)

    [64] [64] Najm, M.M., Harun, S.W., Salam, S., Arof, H., Nizamani, B., Yasin, M.: 8-Hydroxyquinolino cadmium chloride hydrate for generating nanosecond and picosecond pulses in erbium-doped fiber laser cavity. Opt. Fiber Technol. 61, 102439 (2021)

    [65] [65] Nizamani, B., Khudus, M.I.M.A., Salam, S., Najm, M.M., Jafry, A.A.A., Hanafi, E., Yasin, M., Harun, S.W.: Q-switched and mode-locked laser based on aluminium zinc oxide deposited onto D-shape fiber as a saturable absorber. Results Opt 3, 100057 (2021)

    [66] [66] Al-Hiti, A.S., Al-Masoodi, A.H., Najm, M.M., Yasin, M., Harun, S.W.: Passively mode-locked laser at 1μm region based on tungsten trioxide (WO3) saturable absorber. Optik (Stuttgart) 231, 166377 (2021)

    [67] [67] Najm, M.M., Al-Hiti, A.S., Nizamani, B., Zhang, P., Arof, H., Rosol, A.H.A., Yasin, M., Harun, S.W.: Ultrafast laser soliton mode-locked at 1.5 μm region based on Cr2AlC MAX phase as a saturable absorber. Opt. Eng. (Redondo Beach, Calif.) 60(6), 066116 (2021)

    [68] [68] Nizamani, B., Jafry, A.A.A., Salam, S., Fizza, G., Soboh, R.S.M., Abdul Khudus, M.I.M., Hanafi, E., Yasin, M., Harun, S.W.: Aluminium zinc oxide as a saturable absorber for passively Q-switched and mode-locked erbium-doped fiber laser. Laser Phys. 31(5), 055101 (2021)

    [69] [69] Du, J., Wang, Q., Jiang, G., Xu, C., Zhao, C., Xiang, Y., Chen, Y., Wen, S., Zhang, H.: Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction. Sci. Rep. 4(1), 6346 (2014)

    [70] [70] Guoyu, H., Song, Y., Li, K., Dou, Z., Tian, J., Zhang, X.: Modelocked ytterbium-doped fiber laser based on tungsten disulphide. Laser Phys. Lett. 12(12), 125102 (2015)

    [71] [71] Hisyam, M.B., Rusdi, M.F.M., Latiff, A.A., Harun, S.W.: Generation of mode-locked ytterbium doped fiber ring laser using few-layer black phosphorus as a saturable absorber. IEEE J. Sel. Top. Quantum Electron. 23(1), 39–43 (2017)

    [72] [72] Mao, D., She, X., Du, B., Yang, D., Zhang, W., Song, K., Cui, X., Jiang, B., Peng, T., Zhao, J.: Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets. Sci. Rep. 6(1), 23583 (2016)

    [73] [73] Mao, D., Zhang, S., Wang, Y., Gan, X., Zhang, W., Mei, T., Wang, Y., Wang, Y., Zeng, H., Zhao, J.: WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 μm. Opt. Express 23(21), 27509–27519 (2015)

    Tools

    Get Citation

    Copy Citation Text

    Rawan S. M. Soboh, Ahmed H. H. Al-Masoodi, Fuad N. A. Erman1, Abtisam H. H. Al-Masoodi, Bilal Nizamani, Hamzah Arof, Retna Apsari, Sulaiman Wadi Harun. Mode-locked ytterbium-doped fiber laser with zinc phthalocyanine thin film saturable absorber[J]. Frontiers of Optoelectronics, 2022, 15(2): 12200

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: RESEARCH ARTICLE

    Received: Jun. 28, 2021

    Accepted: Oct. 21, 2021

    Published Online: Jan. 18, 2023

    The Author Email: Retna Apsari (retna-a@fst.unair.ac.id)

    DOI:10.1007/s12200-022-00027-2

    Topics