Optical Technique, Volume. 47, Issue 1, 66(2021)
Segmentation of lung lobes based on 3D full convolution neural network
[1] [1] Rindi G, Klimstra D S, Abedi-Ardekani B, et al. A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal[J]. Mod Pathol,2018,31(12):1770-1786.
[3] [3] Doel T, Gavaghan D J, Grau V. Review of automatic pulmonary lobe segmentation methods from CT[J]. Comput Med Imaging Grap,2015,40:13-29.
[4] [4] Park J, Yun J, Kim N, et al. Fully automated lung lobe segmentation in volumetric chest CT with 3D U-Net: validation with intra- and extra-datasets[J]. J Digit Imaging,2020,33(1):221-230.
[5] [5] Wiemker R, Bülow T, Blaffert T. Unsupervised extraction of the pulmonary interlobar fissures from high resolution thoracic CT data[J]. International Congress Series,2005,1281:1121-1126.
[6] [6] Zhang L, Hoffman E A, Reinhardt J M. Atlas-driven lung lobe segmentation in volumetric X-ray CT images[J]. IEEE Transactions on Medical Imaging,2006,25 (1):1-16.
[7] [7] Pu J, Zheng B, Leader J K, et al. Pulmonary lobe segmentation in CT examinations using implicit surface fitting[J]. IEEE Trans Med Imaging,2009,28(12):1986-1996.
[8] [8] Ukil S, Hoffman E A, Reinhardt J M. Automatic lung lobe segmentation in x-ray CT images by 3D watershed transform using anatomic information from the segmented airway tree[C]∥ Medical Imaging 2005:Image Processing SPIE,2005:556-567.
[9] [9] Lassen B, van Rikxoort E M, Schmidt M, et al. Automatic segmentation of the pulmonary lobes from chest CT scans based on fissures, vessels, and bronchi[J]. IEEE Trans Med Imaging,2013,32(2):210-222.
[10] [10] George K, Harrison A P, Jin D, et al. Pathological pulmonary lobe segmentation from CT images using progressive holistically nested neural networks and random walker[C]∥ International Workshop on Deep Learning in Medical Image Analysis International Workshop on Multimodal Learning for Clinical Decision Support. Switzerland:Springer, Cham,2017:195-203.
[11] [11] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation[C]∥ International Conference on Medical Image Computing and Computer-assisted Intervention.Switzerland:Springer,Cham,2015: 234-241.
[13] [13] Ioffe S, Szegedy C. Batch Normalization: Accelerating deep network training by reducing internal covariate shift[EB/OL]∥[2020-07-30]. https:∥arxiv.org/abs/1502.03167.
[14] [14] Caruana R. Multitask Learning[J]. Machine learning,1997,28(1):41-75.
[15] [15] Kendall A, Gal Y, Cipolla R. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]∥ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:7482-7491.
[16] [16] Kingma D P, Ba J. Adam: A method for stochastic optimization[EB/OL]∥[2020-07-30].https:∥arxiv. org/abs/1412.6980.
[17] [17] Heimann T, van Ginneken B, Styner M A, et al. Comparison and evaluation of methods for liver segmentation from CT datasets[J]. IEEE Transactions on Medical Imaging,2009,28(8):1251-1265.
[18] [18] Bornemann L, Kuhnigk J M, Dicken V, et al. Informatics in radiology (infoRAD): new tools for computer assistance in thoracic CT part 2. Therapy monitoring of pulmonary metastases[J]. Radiographics,2005,25(3):841-848.
Get Citation
Copy Citation Text
QI Zhangxuan, GAO Lei, NIE Shengdong. Segmentation of lung lobes based on 3D full convolution neural network[J]. Optical Technique, 2021, 47(1): 66
Category:
Received: Aug. 18, 2020
Accepted: --
Published Online: Apr. 12, 2021
The Author Email: Zhangxuan QI (qizhangxuan@126.com)
CSTR:32186.14.