Optoelectronic Technology, Volume. 40, Issue 4, 229(2020)
Optical Properties of Quasi?2D Organic?inorganic Hybrid Perovskite Films for Solar Cells
[1] [1] A Kojima, TeshimaK, ShiraiY, et al KojimaA,, K Teshima, TeshimaK, ShiraiY, et al KojimaA,, Y Shirai and TeshimaK, ShiraiY, et al KojimaA,. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society. 131(17), 6050-6051(2009).
[2] [2] H S Kim, S, LeeC R, ImJ H, et al KimH, C R Lee, S, LeeC R, ImJ H, et al KimH, J H Im and S, LeeC R, ImJ H, et al KimH. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep. 2(1), (2012).
[4] [4] L Meng, YouJ, GuoT F, et al MengL,, J You, YouJ, GuoT F, et al MengL,, T F Guo and YouJ, GuoT F, et al MengL,. Recent advances in the inverted planar structure of perovskite solar cells. Accounts of Chemical Research. 49(1), 155-165(2016).
[5] [5] H Tsai, NieW, BlanconJ, et al TsaiH,, W Nie, NieW, BlanconJ, et al TsaiH,, J Blancon and NieW, BlanconJ, et al TsaiH,. High-efficiency two-dimensional ruddlesden???popper perovskite solar cells. Nature. 536(7616), 312-316(2016).
[6] [6] N Li, ZhuZ, ChuehC, et al LiN,, Z Zhu, ZhuZ, ChuehC, et al LiN,, C Chueh and ZhuZ, ChuehC, et al LiN,. Mixed cation FAxPEA1–xPbI3 with enhanced phase and ambient stability toward high‐performance perovskite solar cells. Advanced Energy Materials. 7(1), (2017).
[7] [7] F Zhang, LuH, TongJ, et al ZhangF,, H Lu, LuH, TongJ, et al ZhangF,, J Tong and LuH, TongJ, et al ZhangF,. Advances in two-dimensional organic–inorganic hybrid perovskites. Energy and Environmental Science. 13(4), 1154-1186(2020).
[8] [8] J Zhang, QinJ J, WangM, et al ZhangJ,, J J Qin, QinJ J, WangM, et al ZhangJ,, M Wang and QinJ J, WangM, et al ZhangJ,. Uniform permutation of quasi-2D perovskites by vacuum poling for efficient, high-fill-factor solar cells. Joule. 3(12), 3061-3071(2019).
[9] [9] T Luo, ZhangY, XuZ, et al LuoT,, Y Zhang, ZhangY, XuZ, et al LuoT,, Z Xu and ZhangY, XuZ, et al LuoT,. Compositional control in 2D perovskites with alternating cations in the interlayer space for photovoltaics with efficiency over 18%. Advanced Materials. 31(44), (2019).
[10] [10] H Min, KimM, LeeS, et al MinH,, M Kim, KimM, LeeS, et al MinH,, S Lee and KimM, LeeS, et al MinH,. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science. 366(6466), 749-753(2019).
[11] [11] X Lian, ChenJ, ZhangY, et al LianX,, J Chen, ChenJ, ZhangY, et al LianX,, Y Zhang and ChenJ, ZhangY, et al LianX,. Solvation effect in precursor solution enables over 16% efficiency in thick 2D perovskite solar cells. Journal of Materials Chemistry A. 7(33), 19423-19429(2019).
[12] [12] S Wu, LiZ, ZhangJ, et al WuS,, Z Li, LiZ, ZhangJ, et al WuS,, J Zhang and LiZ, ZhangJ, et al WuS,. Efficient large guanidinium mixed perovskite solar cells with enhanced photovoltage and low energy losses. Chemical Communications. 55(30), 4315-4318(2019).
[13] [13] B Saparov, MitziD B SaparovB, and D B Mitzi. Organic–inorganic perovskites: structural versatility for functional materials design. Chemical Reviews. 116(7), 4558-4596(2016).
[14] [14] H Lin, ZhouC, TianY, et al LinH,, C Zhou, ZhouC, TianY, et al LinH,, Y Tian and ZhouC, TianY, et al LinH,. Low-dimensional organometal halide perovskites. ACS Energy Letters. 3(1), 54-62(2018).
[15] [15] V M GoldschmidtV M Goldschmidt. Die Gesetze der Krystallochemie. Naturwissenschaften. 14(21), 477-485(1926).
[16] [16] C C Stoumpos, C, CaoD H, ClarkD J, et al StoumposC, D H Cao, C, CaoD H, ClarkD J, et al StoumposC, D J Clark and C, CaoD H, ClarkD J, et al StoumposC. Ruddlesden–popper hybrid lead iodide perovskite 2D homologous semiconductors. Chemistry of Materials. 28(8), 2852-2867(2016).
[17] [17] J Hu, YanL, YouW HuJ,, L Yan, YanL, YouW HuJ, and W You. Two‐dimensional organic–inorganic hybrid perovskites: a new platform for optoelectronic applications. Advanced Materials. 30(48), (2018).
[18] [18] S Ma, CaiM, ChengT, et al MaS,, M Cai, CaiM, ChengT, et al MaS,, T Cheng and CaiM, ChengT, et al MaS,. Two-dimensional organic-inorganic hybrid perovskite: from material properties to device applications. Science China Materials. 61(10), 1257-1277(2018).
[19] [19] M Kumagai, TakagaharaT KumagaiM, and T Takagahara. Excitonic and nonlinear-optical properties of dielectric quantum-well structures. Physical Review B Condensed Matter. 40(18), 12359-12381(1990).
[20] [20] L V KeldyshL V Keldysh. Coulomb interaction in thin semiconductor and semimetal films. Soviet Journal of Experimental & Theoretical Physics Letters. 29(1), 658-661(1979).
[21] [21] X Hong, IshiharaT, NurmikkoA V HongX,, T Ishihara, IshiharaT, NurmikkoA V HongX, and A V Nurmikko. Dielectric confinement effect on excitons in Pbl4-based layered semiconductors. Physrevb. 45(12), (1992).
[22] [22] T Ishihara, HongX, DingJ, et al IshiharaT,, X Hong, HongX, DingJ, et al IshiharaT,, J Ding and HongX, DingJ, et al IshiharaT,. Dielectric confinement effect for exciton and biexciton states in PbI4-based two-dimensional semiconductor structures. Surface Science. 267(1-3), 323-326(1992).
[23] [23] D H Cao, H, StoumposC C, FarhaO K, et al CaoD, C C Stoumpos, H, StoumposC C, FarhaO K, et al CaoD, O K Farha and H, StoumposC C, FarhaO K, et al CaoD. 2D homologous perovskites as light-absorbing materials for solar cell applications. Journal of the American Chemical Society. 137(24), 7843-7850(2015).
[24] [24] X Yang, ZhangX, DengJ, et al YangX,, X Zhang, ZhangX, DengJ, et al YangX,, J Deng and ZhangX, DengJ, et al YangX,. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nature Communications. 9(1), (2018).
[25] [25] L N Quan, N, YuanM, CominR, et al QuanL, M Yuan, N, YuanM, CominR, et al QuanL, R Comin and N, YuanM, CominR, et al QuanL. Ligand-stabilized reduced-dimensionality perovskites. Journal of the American Chemical Society. 138(8), 2649-2655(2016).
[26] [26] I C Smith, C, HokeE T, SolisibarraD, et al SmithI, E T Hoke, C, HokeE T, SolisibarraD, et al SmithI, D Solisibarra and C, HokeE T, SolisibarraD, et al SmithI. A layered hybrid perovskite solar‐cell absorber with enhanced moisture stability. Angewandte Chemie. 53(42), 11232-11235(2014).
[27] [27] A Miyata, MitiogluA A, PlochockaP, et al MiyataA,, A A Mitioglu, MitiogluA A, PlochockaP, et al MiyataA,, P Plochocka and MitiogluA A, PlochockaP, et al MiyataA,. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. Nature Physics. 11(7), 582-587(2015).
[28] [28] T M Koh, M, ThirumalK, SooH S, et al KohT, K Thirumal, M, ThirumalK, SooH S, et al KohT, H S Soo and M, ThirumalK, SooH S, et al KohT. Multidimensional perovskites: a mixed cation approach towards ambient stable and tunable perovskite photovoltaics. Chemsuschem. 9(18), 2541-2558(2016).
[29] [29] R L Milot, L, SuttonR J, EperonG E, et al MilotR, R J Sutton, L, SuttonR J, EperonG E, et al MilotR, G E Eperon and L, SuttonR J, EperonG E, et al MilotR. Charge-carrier dynamics in 2D hybrid metal-halide perovskites. Nano Letters. 16(11), 7001-7007(2016).
[30] [30] E R Dohner, R, JaffeA, BradshawL R, et al DohnerE, A Jaffe, R, JaffeA, BradshawL R, et al DohnerE, L R Bradshaw and R, JaffeA, BradshawL R, et al DohnerE. Intrinsic white-light emission from layered hybrid perovskites. Journal of the American Chemical Society. 136(38), 13154-13157(2014).
[31] [31] H Mathieu, LefebvreP, ChristolP MathieuH,, P Lefebvre, LefebvreP, ChristolP MathieuH, and P Christol. Simple analytical method for calculating exciton binding energies in semiconductor quantum wells. Physical Review B. 46(7), 4092-4101(1992).
[32] [32] X HeX He. Excitons in anisotropic solids: the model of fractional-dimensional space. Physical Review B. 43(3), 2063-2069(1991).
[33] [33] L C Andreani, C, PasquarelloA AndreaniL and A Pasquarello. Theory of excitons in GaAs-Ga1-xAlxAs quantum wells including valence band mixing. Superlattices & Microstructures. 5(1), 59-63(1989).
[34] [34] S M SzeS M Sze. Physics of semiconductor devices. Amsterdam : Wiley. (1981).
[35] [35] J Even, PedesseauL, JancuJ, et al EvenJ,, L Pedesseau, PedesseauL, JancuJ, et al EvenJ,, J Jancu and PedesseauL, JancuJ, et al EvenJ,. Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. Journal of Physical Chemistry Letters. 4(7), 2999-3005(2013).
[36] [36] L Pedesseau, SaporiD, TraoreB, et al PedesseauL,, D Sapori, SaporiD, TraoreB, et al PedesseauL,, B Traore and SaporiD, TraoreB, et al PedesseauL,. Advances and promises of layered halide hybrid perovskite semiconductors. ACS Nano. 10(11), 9776-9786(2016).
[37] [37] Z G YuZ G Yu. Effective-mass model and magneto-optical properties in hybrid perovskites. Scientific Reports. 6(1), (2016).
[39] [39] T Ishihara, TakahashiJ, GotoT IshiharaT,, J Takahashi, TakahashiJ, GotoT IshiharaT, and T Goto. Optical properties due to electronic transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4. Physical Review B. 42(17), 11099-11107(1990).
[41] [41] D B Straus, B, ParraS H, IotovN, et al StrausD, S H Parra, B, ParraS H, IotovN, et al StrausD, N Iotov and B, ParraS H, IotovN, et al StrausD. Direct observation of electron–phonon coupling and slow vibrational relaxation in organic–inorganic hybrid perovskites. Journal of the American Chemical Society. 138(42), 13798-13801(2016).
[42] [42] D Cortecchia, YinJ, BrunoA, et al CortecchiaD,, J Yin, YinJ, BrunoA, et al CortecchiaD,, A Bruno and YinJ, BrunoA, et al CortecchiaD,. Polaron self-localization in white-light emitting hybrid perovskites. Journal of Materials Chemistry C. 5(11), 2771-2780(2017).
[43] [43] H Zhu, MiyataK, FuY, et al ZhuH,, K Miyata, MiyataK, FuY, et al ZhuH,, Y Fu and MiyataK, FuY, et al ZhuH,. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science. 353(6306), 1409-1413(2016).
[44] [44] X Wu, TrinhM T, NiesnerD, et al WuX,, M T Trinh, TrinhM T, NiesnerD, et al WuX,, D Niesner and TrinhM T, NiesnerD, et al WuX,. Trap states in lead iodide perovskites. Journal of the American Chemical Society. 137(5), 2089-2096(2015).
[45] [45] D B Straus, B, KaganC R StrausD and C R Kagan. Electrons, excitons, and phonons in two-dimensional hybrid perovskites: connecting structural, optical, and electronic properties. The Journal of Physical Chemistry Letters. 9(6), 1434-1447(2018).
[46] [46] F L Pratt, L, WongK S, HayesW, et al PrattF, K S Wong, L, WongK S, HayesW, et al PrattF, W Hayes and L, WongK S, HayesW, et al PrattF. Springer series in solid-state sciences. Journal of Physics C Solid State Physics. 20(3), (2000).
[47] [47] E R Dohner, R, HokeE T, KarunadasaH I DohnerE, E T Hoke, R, HokeE T, KarunadasaH I DohnerE and H I Karunadasa. Self-assembly of broadband white-light emitters. Journal of the American Chemical Society. 136(5), 1718-1721(2014).
[48] [48] J Liu, LengJ, WuK, et al LiuJ,, J Leng, LengJ, WuK, et al LiuJ,, K Wu and LengJ, WuK, et al LiuJ,. Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films. Journal of the American Chemical Society. 139(4), (2017).
[49] [49] Y Zhang, WangR, LiY, et al ZhangY,, R Wang, WangR, LiY, et al ZhangY,, Y Li and WangR, LiY, et al ZhangY,. Optical properties of two-dimensional perovskite films of (C6H5C2H4NH3)2[PbI4] and (C6H5C2H4NH3)2 (CH3NH3)2[Pb3I10]. Journal of Physical Chemistry Letters. 10(1), 13-19(2019).
[50] [50] K Thirumal, ChongW K, XieW, et al ThirumalK,, W K Chong, ChongW K, XieW, et al ThirumalK,, W Xie and ChongW K, XieW, et al ThirumalK,. Morphology-independent stable white-light emission from self-assembled two-dimensional perovskites driven by strong exciton-phonon coupling to the organic framework. Chemistry of Materials. 29(9), 3947-3953(2017).
[51] [51] D Ramirez, Ignacio UribeJ, FrancavigliaL, et al RamirezD,, J Ignacio Uribe, Ignacio UribeJ, FrancavigliaL, et al RamirezD,, L Francaviglia and Ignacio UribeJ, FrancavigliaL, et al RamirezD,. Photophysics behind highly luminescent two-dimensional hybrid perovskite (CH3(CH2)2NH3)2(CH3NH3)2Pb3Br10 thin films. Journal of Materials Chemistry C. 6(23), 6216-6221(2018).
[52] [52] K Wu, BeraA, MaC, et al WuK,, A Bera, BeraA, MaC, et al WuK,, C Ma and BeraA, MaC, et al WuK,. Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. Physical Chemistry Chemical Physics. 16(41), 22476-22481(2014).
Get Citation
Copy Citation Text
Ting LIU, Zeyang WANG, Shu HU, Yang ZHANG, Heng LI, Chuanxiang SHENG. Optical Properties of Quasi?2D Organic?inorganic Hybrid Perovskite Films for Solar Cells[J]. Optoelectronic Technology, 2020, 40(4): 229
Special Issue:
Received: Mar. 5, 2020
Accepted: --
Published Online: Jan. 12, 2021
The Author Email: