Optoelectronic Technology, Volume. 40, Issue 4, 229(2020)

Optical Properties of Quasi?2D Organic?inorganic Hybrid Perovskite Films for Solar Cells

Ting LIU, Zeyang WANG, Shu HU, Yang ZHANG, Heng LI, and Chuanxiang SHENG
Author Affiliations
  • School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, CHN
  • show less
    References(50)

    [1] [1] A Kojima, TeshimaK, ShiraiY, et al KojimaA,, K Teshima, TeshimaK, ShiraiY, et al KojimaA,, Y Shirai and TeshimaK, ShiraiY, et al KojimaA,. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society. 131(17), 6050-6051(2009).

    [2] [2] H S Kim, S, LeeC R, ImJ H, et al KimH, C R Lee, S, LeeC R, ImJ H, et al KimH, J H Im and S, LeeC R, ImJ H, et al KimH. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep. 2(1), (2012).

    [4] [4] L Meng, YouJ, GuoT F, et al MengL,, J You, YouJ, GuoT F, et al MengL,, T F Guo and YouJ, GuoT F, et al MengL,. Recent advances in the inverted planar structure of perovskite solar cells. Accounts of Chemical Research. 49(1), 155-165(2016).

    [5] [5] H Tsai, NieW, BlanconJ, et al TsaiH,, W Nie, NieW, BlanconJ, et al TsaiH,, J Blancon and NieW, BlanconJ, et al TsaiH,. High-efficiency two-dimensional ruddlesden???popper perovskite solar cells. Nature. 536(7616), 312-316(2016).

    [6] [6] N Li, ZhuZ, ChuehC, et al LiN,, Z Zhu, ZhuZ, ChuehC, et al LiN,, C Chueh and ZhuZ, ChuehC, et al LiN,. Mixed cation FAxPEA1–xPbI3 with enhanced phase and ambient stability toward high‐performance perovskite solar cells. Advanced Energy Materials. 7(1), (2017).

    [7] [7] F Zhang, LuH, TongJ, et al ZhangF,, H Lu, LuH, TongJ, et al ZhangF,, J Tong and LuH, TongJ, et al ZhangF,. Advances in two-dimensional organic–inorganic hybrid perovskites. Energy and Environmental Science. 13(4), 1154-1186(2020).

    [8] [8] J Zhang, QinJ J, WangM, et al ZhangJ,, J J Qin, QinJ J, WangM, et al ZhangJ,, M Wang and QinJ J, WangM, et al ZhangJ,. Uniform permutation of quasi-2D perovskites by vacuum poling for efficient, high-fill-factor solar cells. Joule. 3(12), 3061-3071(2019).

    [9] [9] T Luo, ZhangY, XuZ, et al LuoT,, Y Zhang, ZhangY, XuZ, et al LuoT,, Z Xu and ZhangY, XuZ, et al LuoT,. Compositional control in 2D perovskites with alternating cations in the interlayer space for photovoltaics with efficiency over 18%. Advanced Materials. 31(44), (2019).

    [10] [10] H Min, KimM, LeeS, et al MinH,, M Kim, KimM, LeeS, et al MinH,, S Lee and KimM, LeeS, et al MinH,. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science. 366(6466), 749-753(2019).

    [11] [11] X Lian, ChenJ, ZhangY, et al LianX,, J Chen, ChenJ, ZhangY, et al LianX,, Y Zhang and ChenJ, ZhangY, et al LianX,. Solvation effect in precursor solution enables over 16% efficiency in thick 2D perovskite solar cells. Journal of Materials Chemistry A. 7(33), 19423-19429(2019).

    [12] [12] S Wu, LiZ, ZhangJ, et al WuS,, Z Li, LiZ, ZhangJ, et al WuS,, J Zhang and LiZ, ZhangJ, et al WuS,. Efficient large guanidinium mixed perovskite solar cells with enhanced photovoltage and low energy losses. Chemical Communications. 55(30), 4315-4318(2019).

    [13] [13] B Saparov, MitziD B SaparovB, and D B Mitzi. Organic–inorganic perovskites: structural versatility for functional materials design. Chemical Reviews. 116(7), 4558-4596(2016).

    [14] [14] H Lin, ZhouC, TianY, et al LinH,, C Zhou, ZhouC, TianY, et al LinH,, Y Tian and ZhouC, TianY, et al LinH,. Low-dimensional organometal halide perovskites. ACS Energy Letters. 3(1), 54-62(2018).

    [15] [15] V M GoldschmidtV M Goldschmidt. Die Gesetze der Krystallochemie. Naturwissenschaften. 14(21), 477-485(1926).

    [16] [16] C C Stoumpos, C, CaoD H, ClarkD J, et al StoumposC, D H Cao, C, CaoD H, ClarkD J, et al StoumposC, D J Clark and C, CaoD H, ClarkD J, et al StoumposC. Ruddlesden–popper hybrid lead iodide perovskite 2D homologous semiconductors. Chemistry of Materials. 28(8), 2852-2867(2016).

    [17] [17] J Hu, YanL, YouW HuJ,, L Yan, YanL, YouW HuJ, and W You. Two‐dimensional organic–inorganic hybrid perovskites: a new platform for optoelectronic applications. Advanced Materials. 30(48), (2018).

    [18] [18] S Ma, CaiM, ChengT, et al MaS,, M Cai, CaiM, ChengT, et al MaS,, T Cheng and CaiM, ChengT, et al MaS,. Two-dimensional organic-inorganic hybrid perovskite: from material properties to device applications. Science China Materials. 61(10), 1257-1277(2018).

    [19] [19] M Kumagai, TakagaharaT KumagaiM, and T Takagahara. Excitonic and nonlinear-optical properties of dielectric quantum-well structures. Physical Review B Condensed Matter. 40(18), 12359-12381(1990).

    [20] [20] L V KeldyshL V Keldysh. Coulomb interaction in thin semiconductor and semimetal films. Soviet Journal of Experimental & Theoretical Physics Letters. 29(1), 658-661(1979).

    [21] [21] X Hong, IshiharaT, NurmikkoA V HongX,, T Ishihara, IshiharaT, NurmikkoA V HongX, and A V Nurmikko. Dielectric confinement effect on excitons in Pbl4-based layered semiconductors. Physrevb. 45(12), (1992).

    [22] [22] T Ishihara, HongX, DingJ, et al IshiharaT,, X Hong, HongX, DingJ, et al IshiharaT,, J Ding and HongX, DingJ, et al IshiharaT,. Dielectric confinement effect for exciton and biexciton states in PbI4-based two-dimensional semiconductor structures. Surface Science. 267(1-3), 323-326(1992).

    [23] [23] D H Cao, H, StoumposC C, FarhaO K, et al CaoD, C C Stoumpos, H, StoumposC C, FarhaO K, et al CaoD, O K Farha and H, StoumposC C, FarhaO K, et al CaoD. 2D homologous perovskites as light-absorbing materials for solar cell applications. Journal of the American Chemical Society. 137(24), 7843-7850(2015).

    [24] [24] X Yang, ZhangX, DengJ, et al YangX,, X Zhang, ZhangX, DengJ, et al YangX,, J Deng and ZhangX, DengJ, et al YangX,. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nature Communications. 9(1), (2018).

    [25] [25] L N Quan, N, YuanM, CominR, et al QuanL, M Yuan, N, YuanM, CominR, et al QuanL, R Comin and N, YuanM, CominR, et al QuanL. Ligand-stabilized reduced-dimensionality perovskites. Journal of the American Chemical Society. 138(8), 2649-2655(2016).

    [26] [26] I C Smith, C, HokeE T, SolisibarraD, et al SmithI, E T Hoke, C, HokeE T, SolisibarraD, et al SmithI, D Solisibarra and C, HokeE T, SolisibarraD, et al SmithI. A layered hybrid perovskite solar‐cell absorber with enhanced moisture stability. Angewandte Chemie. 53(42), 11232-11235(2014).

    [27] [27] A Miyata, MitiogluA A, PlochockaP, et al MiyataA,, A A Mitioglu, MitiogluA A, PlochockaP, et al MiyataA,, P Plochocka and MitiogluA A, PlochockaP, et al MiyataA,. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. Nature Physics. 11(7), 582-587(2015).

    [28] [28] T M Koh, M, ThirumalK, SooH S, et al KohT, K Thirumal, M, ThirumalK, SooH S, et al KohT, H S Soo and M, ThirumalK, SooH S, et al KohT. Multidimensional perovskites: a mixed cation approach towards ambient stable and tunable perovskite photovoltaics. Chemsuschem. 9(18), 2541-2558(2016).

    [29] [29] R L Milot, L, SuttonR J, EperonG E, et al MilotR, R J Sutton, L, SuttonR J, EperonG E, et al MilotR, G E Eperon and L, SuttonR J, EperonG E, et al MilotR. Charge-carrier dynamics in 2D hybrid metal-halide perovskites. Nano Letters. 16(11), 7001-7007(2016).

    [30] [30] E R Dohner, R, JaffeA, BradshawL R, et al DohnerE, A Jaffe, R, JaffeA, BradshawL R, et al DohnerE, L R Bradshaw and R, JaffeA, BradshawL R, et al DohnerE. Intrinsic white-light emission from layered hybrid perovskites. Journal of the American Chemical Society. 136(38), 13154-13157(2014).

    [31] [31] H Mathieu, LefebvreP, ChristolP MathieuH,, P Lefebvre, LefebvreP, ChristolP MathieuH, and P Christol. Simple analytical method for calculating exciton binding energies in semiconductor quantum wells. Physical Review B. 46(7), 4092-4101(1992).

    [32] [32] X HeX He. Excitons in anisotropic solids: the model of fractional-dimensional space. Physical Review B. 43(3), 2063-2069(1991).

    [33] [33] L C Andreani, C, PasquarelloA AndreaniL and A Pasquarello. Theory of excitons in GaAs-Ga1-xAlxAs quantum wells including valence band mixing. Superlattices & Microstructures. 5(1), 59-63(1989).

    [34] [34] S M SzeS M Sze. Physics of semiconductor devices. Amsterdam : Wiley. (1981).

    [35] [35] J Even, PedesseauL, JancuJ, et al EvenJ,, L Pedesseau, PedesseauL, JancuJ, et al EvenJ,, J Jancu and PedesseauL, JancuJ, et al EvenJ,. Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. Journal of Physical Chemistry Letters. 4(7), 2999-3005(2013).

    [36] [36] L Pedesseau, SaporiD, TraoreB, et al PedesseauL,, D Sapori, SaporiD, TraoreB, et al PedesseauL,, B Traore and SaporiD, TraoreB, et al PedesseauL,. Advances and promises of layered halide hybrid perovskite semiconductors. ACS Nano. 10(11), 9776-9786(2016).

    [37] [37] Z G YuZ G Yu. Effective-mass model and magneto-optical properties in hybrid perovskites. Scientific Reports. 6(1), (2016).

    [39] [39] T Ishihara, TakahashiJ, GotoT IshiharaT,, J Takahashi, TakahashiJ, GotoT IshiharaT, and T Goto. Optical properties due to electronic transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4. Physical Review B. 42(17), 11099-11107(1990).

    [41] [41] D B Straus, B, ParraS H, IotovN, et al StrausD, S H Parra, B, ParraS H, IotovN, et al StrausD, N Iotov and B, ParraS H, IotovN, et al StrausD. Direct observation of electron–phonon coupling and slow vibrational relaxation in organic–inorganic hybrid perovskites. Journal of the American Chemical Society. 138(42), 13798-13801(2016).

    [42] [42] D Cortecchia, YinJ, BrunoA, et al CortecchiaD,, J Yin, YinJ, BrunoA, et al CortecchiaD,, A Bruno and YinJ, BrunoA, et al CortecchiaD,. Polaron self-localization in white-light emitting hybrid perovskites. Journal of Materials Chemistry C. 5(11), 2771-2780(2017).

    [43] [43] H Zhu, MiyataK, FuY, et al ZhuH,, K Miyata, MiyataK, FuY, et al ZhuH,, Y Fu and MiyataK, FuY, et al ZhuH,. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science. 353(6306), 1409-1413(2016).

    [44] [44] X Wu, TrinhM T, NiesnerD, et al WuX,, M T Trinh, TrinhM T, NiesnerD, et al WuX,, D Niesner and TrinhM T, NiesnerD, et al WuX,. Trap states in lead iodide perovskites. Journal of the American Chemical Society. 137(5), 2089-2096(2015).

    [45] [45] D B Straus, B, KaganC R StrausD and C R Kagan. Electrons, excitons, and phonons in two-dimensional hybrid perovskites: connecting structural, optical, and electronic properties. The Journal of Physical Chemistry Letters. 9(6), 1434-1447(2018).

    [46] [46] F L Pratt, L, WongK S, HayesW, et al PrattF, K S Wong, L, WongK S, HayesW, et al PrattF, W Hayes and L, WongK S, HayesW, et al PrattF. Springer series in solid-state sciences. Journal of Physics C Solid State Physics. 20(3), (2000).

    [47] [47] E R Dohner, R, HokeE T, KarunadasaH I DohnerE, E T Hoke, R, HokeE T, KarunadasaH I DohnerE and H I Karunadasa. Self-assembly of broadband white-light emitters. Journal of the American Chemical Society. 136(5), 1718-1721(2014).

    [48] [48] J Liu, LengJ, WuK, et al LiuJ,, J Leng, LengJ, WuK, et al LiuJ,, K Wu and LengJ, WuK, et al LiuJ,. Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films. Journal of the American Chemical Society. 139(4), (2017).

    [49] [49] Y Zhang, WangR, LiY, et al ZhangY,, R Wang, WangR, LiY, et al ZhangY,, Y Li and WangR, LiY, et al ZhangY,. Optical properties of two-dimensional perovskite films of (C6H5C2H4NH3)2[PbI4] and (C6H5C2H4NH3)2 (CH3NH3)2[Pb3I10]. Journal of Physical Chemistry Letters. 10(1), 13-19(2019).

    [50] [50] K Thirumal, ChongW K, XieW, et al ThirumalK,, W K Chong, ChongW K, XieW, et al ThirumalK,, W Xie and ChongW K, XieW, et al ThirumalK,. Morphology-independent stable white-light emission from self-assembled two-dimensional perovskites driven by strong exciton-phonon coupling to the organic framework. Chemistry of Materials. 29(9), 3947-3953(2017).

    [51] [51] D Ramirez, Ignacio UribeJ, FrancavigliaL, et al RamirezD,, J Ignacio Uribe, Ignacio UribeJ, FrancavigliaL, et al RamirezD,, L Francaviglia and Ignacio UribeJ, FrancavigliaL, et al RamirezD,. Photophysics behind highly luminescent two-dimensional hybrid perovskite (CH3(CH2)2NH3)2(CH3NH3)2Pb3Br10 thin films. Journal of Materials Chemistry C. 6(23), 6216-6221(2018).

    [52] [52] K Wu, BeraA, MaC, et al WuK,, A Bera, BeraA, MaC, et al WuK,, C Ma and BeraA, MaC, et al WuK,. Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. Physical Chemistry Chemical Physics. 16(41), 22476-22481(2014).

    Tools

    Get Citation

    Copy Citation Text

    Ting LIU, Zeyang WANG, Shu HU, Yang ZHANG, Heng LI, Chuanxiang SHENG. Optical Properties of Quasi?2D Organic?inorganic Hybrid Perovskite Films for Solar Cells[J]. Optoelectronic Technology, 2020, 40(4): 229

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Mar. 5, 2020

    Accepted: --

    Published Online: Jan. 12, 2021

    The Author Email:

    DOI:10.19453/j.cnki.1005-488x.2020.04.001

    Topics