Acta Optica Sinica, Volume. 44, Issue 14, 1400002(2024)

Research Progress in Orbital Angular Momentum Recognition for Laser Beams Based on Artificial Intelligence (Invited)

Shiyun Zhou1,2,3, Yishu Wang1,2,3, Jinyu Yang1,2,3, Chunqing Gao1,2,3, and Shiyao Fu1,2,3、*
Author Affiliations
  • 1School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2Key Laboratory of Information Photonics Technology, Ministry of Industry and Information Technology, Beijing 100081, China
  • 3Key Laboratory of Optoelectronic Imaging Technology and System, Ministry of Education, Beijing 100081, China
  • show less
    Figures & Tables(9)
    OAM recognition schemes based on machine learning model. (a) SOM model[65]; (b) 143 km communication experiment based on ANN[66]; (c) structure of shallow CNN model[67]; (d) ANN model for multiple OAM recognition[68]; (e) structure of FNN model[69]; (f) structure of 8-CNN model[70]; (g) structure of 10-CNN model[71]; (h) two stage 10-CNN model for high-precision decoding[72]; (i) structure of adaptive deep ELM model[73]
    OAM recognition schemes based on deep learning model. (a) Visualization of VGGNet model[76]; (b) structure of deep CNN model[77]; (c) structure of MetaNet model[78]; (d) structure of Adjusted ENN model[80]; (e) flow chart of fast OAM spectrum analysis based on DRN[81]; (f) structure of opto-electronic neural network[82]; (g) structure of SNN model[83]; (h) flow chart of identifying classic unseparable base phase differences in OAM based on DRN[84]
    OAM recognition schemes based on hybrid learning model. (a) Structure of CNN and R-CDT hybrid model[85]; (b) structure of 3-layer D2NN model[86]; (c) structure of SVM and PCA hybrid model[87]; (d) structure of astigmatic transformation (AT) and CNN hybrid model[88]; (e) structure of angular spectrum (AS) and CNN hybrid model[89]; (f) structure of diffraction and CNN hybrid model (DCNN)[90]
    AI-based OAM recognition schemes under atmospheric turbulence. (a) Structure of 6-CNN model[92]; (b) structure of deep CNN model[93]; (c) structure of TACCNN model[94]; (d) structure of CNN and ConvLSTM hybrid model[95]; (e) structure of turbulence compensation phase screen network[96]
    AI-based OAM recognition schemes under ocean turbulence. (a) Structure of 6-CNN model used in Ref. [97]; (b) structure of 6-CNN model used in Ref. [98]; (c) structure of D2NN model[99]; (d) structure of HOEDNN model[100]
    AI-based OAM recognition schemes under other disturbances. (a) CNN model under noise disturbance[101]; (b) DenseNet model under misalignment disturbance[102]; (c) DenseNet model under smoke disturbance[103]; (d) CNN model under scattering field turbulence[104]; (e) CNN model under white noise and atmospheric turbulences[105]
    • Table 1. Numerical methods, machine learning, and deep learning models involved in this paper

      View table

      Table 1. Numerical methods, machine learning, and deep learning models involved in this paper

      Type of methodologyMethodAbbreviation
      Numerical methodRadon-cumulative-distribution transform48R-CDT
      Principal component analysis49PCA
      Machine learningSelf-organizing map50SOM
      Artificial neural network51ANN
      Support vector machine52SVM
      Convolutional neural network53CNN
      Feedforward neural network54FNN
      Extreme learning machine55ELM

      Deep

      learning

      Efficient neural network56ENN
      Spiking neural network57SNN
      Deep residual network41DRN
      Densely connected convolutional network58DenseNet
      Diffractive deep neural network59D2NN
      Long short-term memory60LSTM
    • Table 2. OAM recognition schemes based on AI technology

      View table

      Table 2. OAM recognition schemes based on AI technology

      Type of AI technologyReferenceYearModelRangeCountEvaluation
      Machine learning[65]2014SOM161E-AER=1.7%
      [66]2016ANN41E-A>80%
      [67]20183-CNN[-10, 10]2S-A>88%
      [68]2018ANN[-10, 10]2S-MSE=0.1
      [69]2019FNN[-25, 25]1S-A=99.55%
      [70]20208-CNN[-50, 50]1E-A=98.54%
      [71]202110-CNN[1, 8]2E-A>98%
      [72]202310-CNN[-4, 8]1E-A=99.84%
      [73]2023ELM[1, 10]1S-RMSE=0.0632
      Deep learning[74]2016VGGNet[1, 110]1S-A>74%
      [77]2018CNN[1, 100]1E-A>99%
      [78]2020MetaNet2551E-A>90.2%
      [80]2022Adjusted ENN[-10, 10]7S-MSE=10-6
      [83]2023SNN[1, 9]9E-A>99.1%
      [82]2023Opto-electronic neural network[-10, 10]21S-MSE=10-3-10-5
      [84]2023DRN1E-MSE=0.00632
      [81]2023DRN[-150, 150]50S-RMSE=0.002
      Hybrid learning[85]2018CNN+R-CDT31E-A=98.50%
      [86]20193-D2NN101S-A>80%
      [87]2020SVM+PCA151E-A=98%
      [88]2021AT+CNN[-3, 3]1E-A=99%
      [89]2021AS+CNN[-6, 6]1S-A=97.9%
      [90]2022DCNN[-7, 7]1E-AF=97.82%
    • Table 3. AI-based OAM recognition schemes under disturbances

      View table

      Table 3. AI-based OAM recognition schemes under disturbances

      DisturbanceReferenceYearModelSettingRangeEvaluation
      DistanceScale

      Nonhomogeneous

      medium

      Atmosphere[92]20196-CNN50 m10-12[-15, 15]E-A=89.48%
      [106]20196-CNN3 km10-15[-8, 8]E-A>84%
      [93]201914-CNN50 m10-130, 1, 3E-MP=98.34%
      [107]20206-CNN5 km10-14[1, 16]S-A>70%
      [94]2020TACCNNDr0=5.2820E-MP>70%
      [95]2022ConvLSTM1 km10-15[-3, 4]E-MSE=0.025
      [108]2022DenseNetDr0=2.67-20, 20E-MP=90.51%
      [96]2023ResNetDr0=5-20, 20E-MP>90%
      Ocean[97]20216-CNN100 m5×10-14K2[1, 10]E-A=99%
      [98]20226-CNN10 m10-14K2[-8, 8]E-A=88.5%
      [99]2022D2NN>50 m10-12K212S-A=82.5%
      [100]2023HOEDNN10-12K216E-A≈100%
      Other[101]2020CNNNoise16E-A>90%
      [102]2021DenseNetMisalignment[-5, 5]E-A=98.35%
      [103]2022DenseNetSmoke[1, 8]E-A=97%
      [104]2022CNNScattering[1, 8]E-A=99%
      [105]2023CNNNoise plus turbulence16S-A=97%
    Tools

    Get Citation

    Copy Citation Text

    Shiyun Zhou, Yishu Wang, Jinyu Yang, Chunqing Gao, Shiyao Fu. Research Progress in Orbital Angular Momentum Recognition for Laser Beams Based on Artificial Intelligence (Invited)[J]. Acta Optica Sinica, 2024, 44(14): 1400002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Dec. 26, 2023

    Accepted: Feb. 27, 2024

    Published Online: Jul. 4, 2024

    The Author Email: Fu Shiyao (fushiyao@bit.edu.cn)

    DOI:10.3788/AOS231987

    Topics