Photonics Research, Volume. 7, Issue 2, 121(2019)

Vertical-cavity surface-emitting lasers for data communication and sensing

Anjin Liu1,2,3、*, Philip Wolf4, James A. Lott4, and Dieter Bimberg4,5
Author Affiliations
  • 1Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 4Institute of Solid State Physics and Center of Nanophotonics, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
  • 5Bimberg Chinese-German Center for Green Photonics of the Chinese Academy of Sciences at CIOMP, Changchun 130033, China
  • show less
    References(202)

    [19] H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, D. Bimberg. Vertical-cavity surface-emitting lasers for optical interconnects. SPIE Newsroom(2014).

    [21] R. Michalzik. VCSELs - Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers, 166(2013).

    [24] C. Wilmsen, H. Temkin, L. A. Coldren. Vertical Cavity Surface Emitting Lasers: Design, Fabrication, Characterization and Applications(1999).

    [25] H. E. Li, K. Iga. Vertical-Cavity Surface-Emitting Laser Devices, 6(2003).

    [34] L. A. Coldren, S. W. Corzine, M. L. Mašanović. Diode Lasers and Photonic Integrated Circuits(2012).

    [40] W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, D. Bimberg. 44  Gb/s VCSEL for optical interconnects. Optical Fiber Communication Conference, PDPC5(2011).

    [45] K. Lascola, W. Yuen, C. Chang-Hasnain. Structural dependence of the thermal resistance of vertical cavity surface emitting lasers. IEEE/LEOS Summer Topical Meeting, 79-80(1997).

    [51] M. Azuchi, N. Jikutani, M. Ami, T. Kondo, F. Koyama. Multioxide layer vertical-cavity surface-emitting lasers with improved modulation bandwidth. 5th Pacific Rim Conference on Lasers and Electro-Optics, 1, 163(2003).

    [54] D. M. Kuchta, P. Pepeljugoski, Y. Kwark. VCSEL modulation at 20  Gb/s over 200  m of multimode fiber using a 3.3  V SiGe laser driver IC. Digest of LEOS Summer Topical Meetings: Advanced Semiconductor Lasers and Applications/Ultraviolet and Blue Lasers and Their Applications/Ultralong Haul DWDM Transmission and Networking/WDM Compo, 49-50(2001).

    [55] R. H. Johnson, D. M. Kuchta. 30  Gb/s directly modulated 850  nm datacom VCSELs. Conference on Lasers and Electro-Optics, CPDB2(2008).

    [64] M. Liu, C. Y. Wang, M. Feng, N. Holonyak. 850  nm oxide-confined VCSELs with 50  Gb/s error-free transmission operating up to 85°C. Conference on Lasers and Electro-Optics, SF1L.6(2016).

    [69] N. Haghighi, G. Larisch, R. Rosales, M. Zorn, J. A. Lott. 35  GHz bandwidth with directly current modulated 980  nm oxide aperture single cavity VCSELs. IEEE International Semiconductor Laser Conference (ISLC), WD4(2018).

    [72] T. Anan, N. Suzuki, K. Yashiki, K. Fukatsu, H. Hatakeyama, T. Akagawa, K. Tokutome, M. Tsuji. High-speed 1.1-μm-range InGaAs VCSELs. Optical Fiber Communication Conference, OthS5(2008).

    [75] D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, J. Tatum. A 55  Gb/s directly modulated 850  nm VCSEL-based optical link. IEEE Photonics Conference, PD1.5(2012).

    [76] D. M. Kuchta, C. L. Schow, A. V. Rylyakov, J. E. Proesel, F. E. Doany, C. Baks, B. H. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, J. Tatum. A 56.1  Gb/s NRZ modulated 850  nm VCSEL-based optical link. Optical Fiber Communication Conference, OW1B.5(2013).

    [77] M. Liu, C. Y. Wang, M. Feng, N. Holonyak. 50  Gb/s error-free data transmission of 850  nm oxide-confined VCSELs. Optical Fiber Communication Conference, Tu3D.2(2016).

    [83] N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, M. Tsuji. 25-Gbps operation of 1.1-μm-range InGaAs VCSELs for high-speed optical interconnections. Optical Fiber Communication Conference, OFA4(2006).

    [85] H. Liu, C. F. Lam, C. Johnson. Scaling optical interconnects in datacenter networks opportunities and challenges for WDM. IEEE Symposium on High Performance Interconnects, 113-116(2010).

    [105] J.-W. Shi, W.-C. Weng, F.-M. Kuo, J.-I. Chyi, S. Pinches, M. Geen, A. Joel. Oxide-relief vertical-cavity surface-emitting lasers with extremely high data-rate/power-dissipation ratios. Optical Fiber Communication Conference, OthG2(2011).

    [109] J. Lavrencik, S. Varughese, V. A. Thomas, G. Landry, Y. Sun, R. Shubochkin, K. Balemarthy, J. Tatum, S. E. Ralph. 100  Gbps PAM-4 transmission over 100  m OM4 and wideband fiber using 850  nm VCSELs. European Conference and Exhibition on Optical Communication (ECOC), Th.1.C5(2016).

    [110] J. Lavrencik, S. Varughese, V. A. Thomas, G. Landry, Y. Sun, R. Shubochkin, K. Balemarthy, J. Tatum, S. E. Ralph. 4λ × 100 Gbps VCSEL PAM-4 transmission over 105  m of wide band multimode fiber. Optical Fiber Communication Conference, Tu2B.6(2017).

    [113] S. M. R. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. Tatum, A. Amezcua-Correa, M. Bigot-Astruc, D. Molin, F. Achten, P. Sillard. 180  Gbps PAM4 VCSEL transmission over 300  m wideband OM4 fibre. Optical Fiber Communication Conference, Th3G.2(2016).

    [116] P.-K. Shen, C.-T. Chen, C.-H. Chang, C.-Y. Chiu, C.-C. Chang, H.-C. Lan, Y.-C. Lee, M.-L. Wu. On-chip optical interconnects integrated with laser and photodetector using three-dimensional silicon waveguides. Optical Fiber Communication Conference, M2K.6(2014).

    [118] R. Santos, D. D’Agostino, F. M. Soares, H. Rabbani Haghighi, M. K. Smit, X. J. M. Leijtens. Fabrication and characterization of a wet-etched InP-based vertical coupling mirror. 18th Annual Symposium of the IEEE Photonics Benelux, 179-182(2013).

    [168] A. Liu, W. Zheng, D. Bimberg. Unidirectional transmission in finite-size high-contrast gratings. Asia Communications and Photonics Conference, AF2A.52(2016).

    [193] M. Gębski, T. Czyszanowski, J. A. Lott. Electrically-injected VCSELs with a composite monolithic high contrast grating and distributed Bragg reflector coupling mirror. IEEE International Semiconductor Laser Conference (ISLC), TuP38(2018).

    CLP Journals

    [1] Jing Zhang, Chenxi Hao, Wanhua Zheng, Dieter Bimberg, Anjin Liu, "Demonstration of electrically injected vertical-cavity surface-emitting lasers with post-supported high-contrast gratings," Photonics Res. 10, 1170 (2022)

    [2] Lei Han, Yuanbin Gao, Sheng Hang, Chunshuang Chu, Yonghui Zhang, Quan Zheng, Qing Li, Zi-Hui Zhang, "Impact of p-AlGaN/GaN hole injection layer on GaN-based vertical cavity surface emitting laser diodes [Invited]," Chin. Opt. Lett. 20, 031402 (2022)

    [3] Xiao-Long Wang, Yong-Gang Zou, Zhi-Fang He, Guo-Jun Liu, Xiao-Hui Ma. Polarization control and tuning efficiency of tunable vertical-cavity surface-emitting laser with internal-cavity sub-wavelength grating[J]. Chinese Physics B, 2020, 29(8):

    Tools

    Get Citation

    Copy Citation Text

    Anjin Liu, Philip Wolf, James A. Lott, Dieter Bimberg, "Vertical-cavity surface-emitting lasers for data communication and sensing," Photonics Res. 7, 121 (2019)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optoelectronics

    Received: Sep. 7, 2018

    Accepted: Nov. 27, 2018

    Published Online: Feb. 19, 2019

    The Author Email: Anjin Liu (liuanjin@semi.ac.cn)

    DOI:10.1364/PRJ.7.000121

    Topics