Journal of Inorganic Materials, Volume. 34, Issue 2, 145(2019)
Polyaniline-carbon Pillared Graphene Composite: Preparation and Electrochemical Performance
[1] GEIM A K, MOROZOV S V, NOVOSELOV K S. Two-dimensional gas of massless Dirac fermions in graphene[D]. Nature, 438, 197-200(2005).
[2] HAN P X, YUE Y H, ZHANG L X. Nitrogen-doping of chemically reduced mesocarbon microbead oxide for the improved performance of lithium ion batteries[D]. Carbon, 50, 1355-1362(2012).
[3] GILJE S, LI D, MULLER M B. Processable aqueous dispersions of graphene nanosheets[D]. Nat. Nanotechnol., 3, 101-105(2008).
[4] SHEN X P, WANG G X, YAO J. Graphene nanosheets for enhanced lithium storage in lithium ion batteries[D]. Carbon, 47, 2049-2053(2009).
[5] BONACCORSO F, HASAN T, SUN Z. Graphene photonics and optoelectronics[D]. Nat. Photonics, 4, 611-622(2010).
[6] REN Z Y, WAN L J, WANG H. Graphene nanosheets based on controlled exfoliation process for enhanced lithium storage in lithium-ion battery[D]. Diam. Relat. Mater., 20, 756-761(2011).
[7] LEE S H, PARK K S, SEO S D. Synthesis of graphene nanosheets by the electrolytic exfoliation of graphite and their direct assembly for lithium ion battery anodes[D]. Mater. Chem. Phys., 135, 309-316(2012).
[8] SANG Y, XIE H, ZHOU Y. Assembling and nanocutting graphene/CNT sponge for improved lithium-ion batteries[D]. Ionics, 23, 1329-1336(2017).
[9] KIM C, KIM H, KIM J W. Graphene oxide assisted synthesis of self-assembled zinc oxide for lithium-ion battery anode[D]. Chemistry of Materials, 28, 8498-8503(2016).
[10] LI R, ZHANG M M, ZHANG Q Q. TiO2 nanocrystals/ graphene hybrids with enhanced Li-ion storage performance[D]. J. Energy Chem., 23, 403-410(2014).
[11] LI L, RAJI A R, TOUR J M. Graphene-wrapped MnO2-graphene nanoribbons as anode materials for high-performance lithium ion batteries[D]. Advanced Materials, 25, 6298-6302(2013).
[12] CHENG J, G Z, ZHANG J Y. Graphene nanosheets prepared by low-temperature exfoliation and reduction technique toward fabrication of high-performance poly(1-butene)/graphene films[D]. Iran. Polym. J., 26, 55-69(2017).
[13] LU D D, SHEN B, ZHAI W T. Synthesis of graphene by low-temperature exfoliation and reduction of graphite oxide under ambient atmosphere[D]. J. Mater. Chem. C, 1, 50-53(2013).
[14] , MENG L Y. Synthesis of graphene nanosheets
[15] LV W, NIU S Z, ZHANG C. One-pot self-assembly of graphene/ carbon nanotube/sulfur hybrid with three dimensionally interconnected structure for lithium-sulfur batteries[D]. Journal of Power Sources, 295, 182-189(2015).
[16] HUANG Y, WU H W, ZONG M. Electrostatic self-assembly of graphene oxide wrapped sulfur particles for lithium-sulfur batteries[D]. Mater. Res. Bull., 64, 12-16(2015).
[17] TANG J J, YANG J, ZHOU L M. Layer-by-layer self- assembly of a sandwich-like graphene wrapped SnO
[18] BAI X J, HOU M, LIU C. Silicon/CNTs/graphene free-standing anode material for lithium-ion battery.[D]. Journal of Inorganic Materials, 32, 705-712(2017).
[19] CHEN X H, HU A P, TANG Y H. Self-assembly of Fe3O4 nanorods on graphene for lithium ion batteries with high rate capacity and cycle stability.[D]. Electrochemistry Communications, 28, 139-142(2013).
[20] LIU X F, ZHANG Q, ZHAO M Q. Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li-S batteries[D]. ACS Nano, 6, 10759-10769(2012).
[21] CHOI H J, KUMAR N A, SHIN Y R. Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors[D]. ACS Nano, 6, 1715-1723(2012).
[22] ZHANG K, ZHANG L L, ZHAO X S. Graphene/polyaniline nanofiber composites as supercapacitor electrodes[D]. Chemistry of Materials, 22, 1392-1401(2010).
[23] DENG Z, YANG W L, ZHU B Y. Pyrolyzed polyaniline and graphene nano sheet composite with improved rate and cycle performance for lithium storage[D]. Carbon, 92, 354-361(2015).
[24] HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide,[D]. J. Am. Chem. Soc., 80, 1339-1339(1958).
[25] BAO S J, XU M, YANG F. Self-assembled hierarchical graphene/ polyaniline hybrid aerogels for electrochemical capacitive energy storage[D]. Electrochimica Acta, 137, 381-387(2014).
[26] CHEN C, SHAO D, SUN Y B. Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline[D]. Environmental Science & Technology, 47, 9904-9910(2013).
[27] FAN W, TJIU W W, XIA Y Y. Nitrogen-doped graphene hollow nanospheres as novel electrode materials for supercapacitor applications[D]. Journal of Power Sources, 243, 973-981(2013).
[28] WANG C, WANG Y L, ZHAN L. Synthesis of nitrogen doped graphene through microwave irradiation[D]. Journal of Inorganic Materials, 27, 146-150(2012).
[29] GENG D, LI X, ZHANG Y. Superior cycle stability of nitrogen- doped graphene nanosheets as anodes for lithium ion batteries[D]. Electrochemistry Communications, 13, 822-825(2011).
[30] LI F, LIU M, WANG D W. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage[D]. Angew. Chem. Int. Ed., 47, 373-376(2008).
[31] GENG D S, LI X F, ZHANG Y. Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries[D]. Electrochemistry Communications, 13, 822-825(2011).
[32] CHEN T, CHEN W X, WANG Z. CTAB-assisted synthesis of single-layer MoS2-graphene composites as anode materials of Li-ion batteries[D]. J. Mater. Chem. A, 1, 2202-2210(2013).
Get Citation
Copy Citation Text
Xi HU, Hong-Bo LIU, Xiao-Hong XIA, Zhi-Qiang GU, [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Polyaniline-carbon Pillared Graphene Composite: Preparation and Electrochemical Performance[J]. Journal of Inorganic Materials, 2019, 34(2): 145
Category: Research Articles
Received: May. 2, 2018
Accepted: --
Published Online: Sep. 24, 2021
The Author Email: