Acta Optica Sinica, Volume. 44, Issue 5, 0527002(2024)
Two-Party Mutual Authentication Semi-Quantum Key Agreement Protocol Based on Bell State
[1] Bennett C H, Brassard G. Quantum cryptography: public key distribution and coin tossing[J]. Theoretical Computer Science, 560, 7-11(2014).
[2] He Y F, Li C Y, Guo J R et al. Passive measurement-device-independent quantum key distribution based on heralded pair coherent states[J]. Chinese Journal of Lasers, 47, 0912002(2020).
[3] He Y F, Ma W P. Measurement-device-independent quantum key distribution protocols against collective noise[J]. Modern Physics Letters B, 35, 2150195(2021).
[4] He Y F, Ma W P. The decoy-state measurement-device-independent quantum key distribution with heralded single-photon source[J]. International Journal of Theoretical Physics, 59, 908-917(2020).
[5] Zhou N, Zeng G, Xiong J. Quantum key agreement protocol[J]. Electronics Letters, 40, 1149-1150(2004).
[6] He Y F, Pang Y B, Di M. Mutual authentication quantum key agreement protocol based on Bell states[J]. Quantum Information Processing, 21, 290(2022).
[7] He Y F, Yue Y R, Di M et al. Two-party mutual authentication quantum key agreement protocol[J]. International Journal of Theoretical Physics, 61, 145(2022).
[8] He Y F, Li Z, Yang M M. Quantum key agreement protocol based on four-particle cluster states[J]. Laser & Optoelectronics Progress, 60, 2127001(2023).
[9] Wu X D, Wang Y J, Huang D. Passive continuous-variable quantum secret sharing using a thermal source[J]. Physical Review A, 101, 022301(2020).
[10] Liao Q, Liu H J, Zhu L J et al. Quantum secret sharing using discretely modulated coherent states[J]. Physical Review A, 103, 032410(2021).
[11] He Y F, Ma W P. Multiparty quantum secure direct communication immune to collective noise[J]. Quantum Information Processing, 18, 4(2018).
[12] Long G L, Deng F G, Wang C et al. Quantum secure direct communication and deterministic secure quantum communication[J]. Frontiers of Physics in China, 2, 251-272(2007).
[13] Guo H, Li Y X, Wei J H et al. Immune to collective noise measurement-device-independent quantum secure direct communications[J]. Laser & Optoelectronics Progress, 59, 1727001(2022).
[14] Liu B, Gao F, Jia H Y et al. Efficient quantum private comparison employing single photons and collective detection[J]. Quantum Information Processing, 12, 887-897(2013).
[15] He Y F, Ma W P. Quantum key agreement protocols with four-qubit cluster states[J]. Quantum Information Processing, 14, 3483-3498(2015).
[16] Liu B, Gao F, Huang W et al. Multiparty quantum key agreement with single particles[J]. Quantum Information Processing, 12, 1797-1805(2013).
[17] Shen D S, Ma W P, Wang L L. Two-party quantum key agreement with four-qubit cluster states[J]. Quantum Information Processing, 13, 2313-2324(2014).
[18] Huang W, Su Q, Wu X et al. Quantum key agreement against collective decoherence[J]. International Journal of Theoretical Physics, 53, 2891-2901(2014).
[19] Sun Z W, Yu J P, Wang P. Efficient multi-party quantum key agreement by cluster states[J]. Quantum Information Processing, 15, 373-384(2016).
[20] He Y F, Ma W P. Two quantum key agreement protocols immune to collective noise[J]. International Journal of Theoretical Physics, 56, 328-338(2017).
[21] Shukla C, Thapliyal K, Pathak A. Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue[J]. Quantum Information Processing, 16, 295(2017).
[22] He Y F, Pang Y B, Di M et al. Two-party semi-quantum key agreement protocol based on G-like states[J]. Chinese Journal of Lasers, 49, 1312001(2022).
[23] Xu T J, Chen Y, Geng M J et al. Single-state multi-party semiquantum key agreement protocol based on multi-particle GHZ entangled states[J]. Quantum Information Processing, 21, 266(2022).
[24] He Y F, Pang Y B, Di M et al. Four-party semi-quantum key agreement protocol based on four particle cluster states[J]. Acta Optica Sinica, 43, 2027001(2023).
[25] Xu Y G, Wang C N, Cheng K F et al. A novel three-party mutual authentication quantum key agreement protocol with GHZ states[J]. International Journal of Theoretical Physics, 61, 245(2022).
[26] Cross A W. The IBM Q experience and QISKit open-source quantum computing software[C], L58.003(2018).
[27] Cabello A. Quantum key distribution in the Holevo limit[J]. Physical Review Letters, 85, 5635-5638(2000).
[28] He Y F, Zhao Y K, Li C Y et al. Measurement-device-independent quantum key distribution of finite detectors dead time in heralded pair coherent state[J]. Acta Optica Sinica, 40, 2427001(2020).
[29] Yan L L, Zhang S B, Chang Y et al. Semi-quantum key agreement and private comparison protocols using bell states[J]. International Journal of Theoretical Physics, 58, 3852-3862(2019).
[30] Zhu H F, Wang C N, Li Z X. Semi-honest three-party mutual authentication quantum key agreement protocol based on GHZ-like state[J]. International Journal of Theoretical Physics, 60, 293-303(2021).
[31] Ma X Y, Hur J, Li Z X et al. Quantum mutual authentication key agreement scheme using five-qubit entanglement towards different realm architecture[J]. International Journal of Theoretical Physics, 60, 1933-1948(2021).
Get Citation
Copy Citation Text
Yefeng He, Xiyuan Liang, Mingyue Cai. Two-Party Mutual Authentication Semi-Quantum Key Agreement Protocol Based on Bell State[J]. Acta Optica Sinica, 2024, 44(5): 0527002
Category: Quantum Optics
Received: Nov. 10, 2023
Accepted: Dec. 29, 2023
Published Online: Mar. 11, 2024
The Author Email: Liang Xiyuan (xiyuaner2000@163.com)
CSTR:32393.14.AOS231780