Chinese Journal of Lasers, Volume. 50, Issue 4, 0402018(2023)

Laser Cleaning Technology of Anodized Film of 5083 Aluminum Alloy

Wei Wang1,2, Xiangcheng Ji1,2, Weijun Liu1,2、*, Fei Xing1,2, and Hongyou Bian1,2
Author Affiliations
  • 1School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870,Liaoning,China
  • 2Key Laboratory of Engineering Technology for Laser Surface of Liaoning Province, Shenyang 110870, Liaoning, China
  • show less
    Figures & Tables(27)
    Morphologies of anodized film of 5083 aluminum alloy. (a) SEM morphology; (b) enlarged pore morphology; (c) metallographic micrograph; (d) oxide film thickness
    Laser cleaning system. (a) Schematic; (b) laser scanning track
    Two dimensional morphologies after laser cleaning under different single pulse energies. (a) 84 mJ; (b) 86 mJ; (c) 88 mJ; (d) 90 mJ; (e) 92 mJ; (f) 94 mJ; (g) 96 mJ; (h) 98 mJ; (i) 100 mJ
    Three dimensional morphologies after laser cleaning under different single pulse energies. (a) 84 mJ; (b) 86 mJ; (c) 88 mJ; (d) 90 mJ; (e) 92 mJ; (f) 94 mJ; (g) 96 mJ; (h) 98 mJ; (i) 100 mJ
    Surface roughnesses after laser cleaning under different single pulse energies
    Two dimensional morphologies after laser cleaning under different pulse frequencies. (a) 3.71 kHz; (b) 6.35 kHz; (c) 7.67 kHz; (d) 8.33 kHz; (e) 8.67 kHz; (f) 9.00 kHz; (g) 9.33 kHz; (h) 9.67 kHz; (i) 10.00 kHz
    Schematic of spot overlap
    Three dimensional morphologies after laser cleaning under different pulse frequencies. (a) 3.71 kHz; (b) 6.35 kHz; (c) 7.67 kHz; (d) 8.33 kHz; (e) 8.67 kHz; (f) 9.00 kHz; (g) 9.33 kHz; (h) 9.67 kHz; (i) 10.00 kHz
    Surface roughnesses after laser cleaning under different pulse frequencies
    Two dimensional morphologies after laser cleaning at different laser travel speeds. (a) 1.0 mm/s; (b) 3.0 mm/s; (c) 6.5 mm/s; (d) 7.0 mm/s; (e) 7.5 mm/s; (f) 12.5 mm/s
    Running track of laser spot
    Three dimensional morphologies after laser cleaning at different laser travel speeds. (a) 1.0 mm/s; (b) 3.0 mm/s; (c) 6.5mm/s;(d) 7.0 mm/s; (e) 7.5 mm/s; (f) 12.5 mm/s
    Surface roughnesses after laser cleaning under different laser travel speeds
    Comparison of three dimensional surface morphologies before and after mechanical polishing. (a) Before mechanical polishing;(b) after mechanical polishing
    SEM morphologies after laser cleaning under different single pulse energies. (a) 84 mJ; (b) 86 mJ; (c) 88 mJ; (d) 90 mJ; (e) 92 mJ; (f) 94 mJ; (g) 96 mJ; (h) 98 mJ; (i) 100 mJ
    EDS detection results corresponding to SEM morphologies in Fig. 15
    SEM morphologies after laser cleaning under different pulse frequencies. (a) 3.71 kHz; (b) 6.35 kHz; (c) 7.67 kHz; (d) 8.33 kHz; (e) 8.67 kHz; (f) 9.00 kHz; (g) 9.33 kHz; (h) 9.67 kHz; (i) 10.00 kHz
    EDS detection results corresponding to SEM morphologies in Fig. 17
    SEM morphologies after laser cleaning at different laser travel speeds. (a) 1.0 mm/s; (b) 3.0 mm/s; (c) 6.5 mm/s; (d) 7.0 mm/s; (e) 7.5 mm/s; (f) 12.5 mm/s
    EDS detection results corresponding to SEM morphologies in Fig. 19
    Element contents (mass fractions) of laser cleaned surface and substrate surface
    Mechanisms of laser removal of anodized film. (a) Hole blasting mechanism; (b) elastic vibration stripping mechanism; (c) thermal ablation mechanism; (d) flow forming morphology of molten pool at position ① in Fig. 22(c)
    • Table 1. Chemical compositions of 5083 aluminum alloy substrate

      View table

      Table 1. Chemical compositions of 5083 aluminum alloy substrate

      ElementAlMgMnSiFeCrZnTiCu
      Mass fraction /%Bal.4.00 4.900.40 1.000.400.400.05 0.250.250.150.10
    • Table 2. Chemical compositions of 5083 aluminum alloy anodized film

      View table

      Table 2. Chemical compositions of 5083 aluminum alloy anodized film

      ElementAlOCSMgMnSiFe
      Mass fraction /%43.4925.8723.305.550.950.310.310.22
    • Table 3. Main process parameters

      View table

      Table 3. Main process parameters

      ParameterValue
      Wavelength /nm1064
      Jump delay /μs500
      Pulse width /ns70
      Scanning galvanometer speed /(mm/s)4000
      Spot size /mm1.5
      Monopulse energy /mJ84 100
      Pulse frequency /kHz3.71 10.00
      Laser travel speed /(mm/s)1.0 12.5
    • Table 4. Chemical compositions of fine powder particles

      View table

      Table 4. Chemical compositions of fine powder particles

      ElementAlOCSMgMnSiFe
      Mass fraction /%49.4024.0817.426.741.210.360.450.34
    • Table 5. Element analysis results for areas A and B in Fig. 15 (c)

      View table

      Table 5. Element analysis results for areas A and B in Fig. 15 (c)

      ElementAlOCSMgMnFeSi
      Mass fraction in zone A /%76.465.812.40.783.450.450.440.22
      Mass fraction in zone B /%57.418.7317.393.192.190.440.410.25
    Tools

    Get Citation

    Copy Citation Text

    Wei Wang, Xiangcheng Ji, Weijun Liu, Fei Xing, Hongyou Bian. Laser Cleaning Technology of Anodized Film of 5083 Aluminum Alloy[J]. Chinese Journal of Lasers, 2023, 50(4): 0402018

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Apr. 27, 2022

    Accepted: Jun. 27, 2022

    Published Online: Feb. 2, 2023

    The Author Email: Liu Weijun (wjliu@sut.edu.cn)

    DOI:10.3788/CJL220793

    Topics