Journal of Infrared and Millimeter Waves, Volume. 42, Issue 6, 895(2023)

Clinical research progress on the fluorescence imaging in the second near-infrared window

Hu-Wei NI and Jun QIAN*
Author Affiliations
  • Centre for Optical and Electromagnetic Research,College of Optical Science and Engineering,International Research Center for Advanced Photonics,Zhejiang University,Hangzhou 310058,China
  • show less
    References(69)

    [1] NAGAYA T, NAKAMURA Y A, CHOYKE P L et al. Fluorescence-Guided Surgery[J]. Front Oncol, 7, 314(2017).

    [2] HANDGRAAF H J, VERBEEK F P, TUMMERS Q R et al. Real-time near-infrared fluorescence guided surgery in gynecologic oncology: a review of the current state of the art[J]. Gynecologic oncology, 135, 606-613(2014).

    [3] PAPAYAN G, AKOPOV A. Potential of indocyanine green near-infrared fluorescence imaging in experimental and clinical practice[J]. Photodiagnosis Photodyn Ther, 24, 292-299(2018).

    [4] LAUWERENDS L J, VAN DRIEL P, BAATENBURG DE JONG R J et al. Real-time fluorescence imaging in intraoperative decision making for cancer surgery[J]. Lancet Oncol, 22, e186-e195(2021).

    [5] ROSENTHAL E L, WARRAM J M, BLAND K I et al. The status of contemporary image-guided modalities in oncologic surgery[J]. Ann Surg, 261, 46-55(2015).

    [6] SMITH A M, MANCINI M C, NIE S. Bioimaging: second window for in vivo imaging[J]. Nat Nanotechnol, 4, 710-711(2009).

    [7] VAHRMEIJER A L, HUTTEMAN M, VAN DER VORST J R et al. Image-guided cancer surgery using near-infrared fluorescence[J]. Nature reviews Clinical oncology, 10, 507-518(2013).

    [8] ISHIZAWA T, FUKUSHIMA N, SHIBAHARA J et al. Real-time identification of liver cancers by using indocyanine green fluorescent imaging[J]. Cancer, 115, 2491-2504(2009).

    [9] ISHIZUKA M, KUBOTA K, KITA J et al. Intraoperative observation using a fluorescence imaging instrument during hepatic resection for liver metastasis from colorectal cancer[J]. Hepato-gastroenterology, 59, 90-92(2012).

    [10] VAN DAM G M, THEMELIS G, CRANE L M et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results[J]. Nature medicine, 17, 1315-1319(2011).

    [11] KEATING J, TCHOU J, OKUSANYA O et al. Identification of breast cancer margins using intraoperative near-infrared imaging[J]. Journal of surgical oncology, 113, 508-514(2016).

    [12] ZHOU Q, VAN DEN BERG N S, ROSENTHAL E L et al. EGFR-targeted intraoperative fluorescence imaging detects high-grade glioma with panitumumab-IRDye800 in a phase 1 clinical trial[J]. Theranostics, 11, 7130-7143(2021).

    [13] ANKER A M, PRANTL L, STRAUSS C et al. Clinical Impact of DIEP Flap Perforator Characteristics - A Prospective Indocyanine Green Fluorescence Imaging Study[J]. Journal of plastic, reconstructive & aesthetic surgery : JPRAS, 73, 1526-1533(2020).

    [14] SCHöPPER S, SMEETS R, GOSAU M et al. Intraoperative ICG-based fluorescence-angiography in head and neck reconstruction: Predictive value for impaired perfusion of free flaps[J]. Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery, 50, 371-379(2022).

    [15] FENG Z, TANG T, WU T et al. Perfecting and extending the near-infrared imaging window[J]. Light, science & applications, 10, 197(2021).

    [16] TANZID M, HOGAN N J, SOBHANI A et al. Absorption-Induced Image Resolution Enhancement in Scattering Media[J]. Acs Photonics, 3, 1787-1793(2016).

    [17] CARR J A, AELLEN M, FRANKE D et al. Absorption by water increases fluorescence image contrast of biological tissue in the shortwave infrared[J]. Proceedings of the National Academy of Sciences of the United States of America, 115, 9080-9085(2018).

    [18] XUE D, WU D, LU Z et al. Structural and Functional NIR-II Fluorescence Bioimaging in Urinary System via Clinically Approved Dye Methylene Blue[J]. Engineering, 22, 149-158(2023).

    [19] FAN X X, XIA Q M, ZHANG Y Y et al. Aggregation-Induced Emission (AIE) Nanoparticles-Assisted NIR-II Fluorescence Imaging-Guided Diagnosis and Surgery for Inflammatory Bowel Disease (IBD)[J]. Adv Healthc Mater, 10, e2101043(2021).

    [20] YU X M, YING Y Y, FENG Z et al. Aggregation-induced emission dots assisted non-invasive fluorescence hysterography in near-infrared IIb window[J]. Nano Today, 39, 101235(2021).

    [21] FAN X, LI Y, FENG Z et al. Nanoprobes-Assisted Multichannel NIR-II Fluorescence Imaging-Guided Resection and Photothermal Ablation of Lymph Nodes[J]. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 8, 2003972(2021).

    [22] LI Y X, LI Z S, HU D H et al. Targeted NIR-II emissive nanoprobes for tumor detection in mice and rabbits[J]. Chemical Communications, 57, 6420-6423(2021).

    [23] WU D, LIU S, ZHOU J et al. Organic Dots with Large π-Conjugated Planar for Cholangiography beyond 1500 nm in Rabbits: A Non-Radioactive Strategy[J]. ACS nano, 15, 5011-5022(2021).

    [24] FENG Z, BAI S Y, QI J et al. Biologically Excretable Aggregation-Induced Emission Dots for Visualizing Through the Marmosets Intravitally: Horizons in Future Clinical Nanomedicine[J]. Advanced Materials, 33, 2008123(2021).

    [25] CAI Z, ZHU L, WANG M et al. NIR-II fluorescence microscopic imaging of cortical vasculature in non-human primates[J]. Theranostics, 10, 4265-4276(2020).

    [26] HERNOT S, VAN MANEN L, DEBIE P et al. Latest developments in molecular tracers for fluorescence image-guided cancer surgery[J]. Lancet Oncol, 20, e354-e367(2019).

    [27] CHI C, DU Y, YE J et al. Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology[J]. Theranostics, 4, 1072-1084(2014).

    [28] LI X, GONG H, SHAO X et al. Recent advances in short wavelength infrared InGaAs focal plane arrays[J]. Journal of Infrared and Millimeter Waves, 41, 129-138(2022).

    [29] HU Z, FANG C, LI B et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows[J]. Nat Biomed Eng, 4, 259-271(2020).

    [30] ANTARIS A L, CHEN H, CHENG K et al. A small-molecule dye for NIR-II imaging[J]. Nature materials, 15, 235-242(2016).

    [31] LI B, ZHAO M, FENG L et al. Organic NIR-II molecule with long blood half-life for in vivo dynamic vascular imaging[J]. Nature communications, 11, 3102(2020).

    [32] XU Y, LI C, XU R et al. Tuning molecular aggregation to achieve highly bright AIE dots for NIR-II fluorescence imaging and NIR-I photoacoustic imaging[J]. Chemical science, 11, 8157-8166(2020).

    [33] ZHU W, KANG M, WU Q et al. Zwitterionic AIEgens: Rational Molecular Design for NIR‐II Fluorescence Imaging‐Guided Synergistic Phototherapy[J]. Advanced Functional Materials, 31, 2007026(2020).

    [34] QI J, SUN C W, ZEBIBULA A et al. Real-Time and High-Resolution Bioimaging with Bright Aggregation-Induced Emission Dots in Short-Wave Infrared Region[J]. Advanced Materials, 30, 1706856(2018).

    [35] LI Y Y, CAI Z C, LIU S J et al. Design of AIEgens for near-infrared IIb imaging through structural modulation at molecular and morphological levels[J]. Nature communications, 11, 1255(2020).

    [36] HONG G S, ZOU Y P, ANTARIS A L et al. Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window[J]. Nature communications, 5, 4206(2014).

    [37] VERMA M, CHAN Y H, SAHA S et al. Recent Developments in Semiconducting Polymer Dots for Analytical Detection and NIR-II Fluorescence Imaging[J]. Acs Applied Bio Materials, 4, 2142-2159(2021).

    [38] LIAN W, TU D T, HU P et al. Broadband excitable NIR-II luminescent nano-bioprobes based on CuInSe2 quantum dots for the detection of circulating tumor cells[J]. Nano Today, 35, 100943(2020).

    [39] ZEBIBULA A, ALIFU N, XIA L et al. Ultrastable and Biocompatible NIR-II Quantum Dots for Functional Bioimaging[J]. Advanced Functional Materials, 28, 1703451(2018).

    [40] ZHANG M, YUE J, CUI R et al. Bright quantum dots emitting at ∼1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging[J]. Proc Natl Acad Sci U S A, 115, 6590-6595(2018).

    [41] CHEN L L, ZHAO L, WANG Z G et al. Near-Infrared-II Quantum Dots for In Vivo Imaging and Cancer Therapy[J]. Small (Weinheim an der Bergstrasse, Germany), 18, e2104567(2022).

    [42] WANG R, ZHOU L, WANG W et al. In vivo gastrointestinal drug-release monitoring through second near-infrared window fluorescent bioimaging with orally delivered microcarriers[J]. Nature communications, 8, 14702(2017).

    [43] ZHONG Y, DAI H. A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of biological systems[J]. Nano research, 13, 1281-1294(2020).

    [44] SHAO W, CHEN G, KUZMIN A et al. Tunable Narrow Band Emissions from Dye-Sensitized Core/Shell/Shell Nanocrystals in the Second Near-Infrared Biological Window[J]. Journal of the American Chemical Society, 138, 16192-16195(2016).

    [45] CHO S S, SALINAS R, LEE J Y K. Indocyanine-Green for Fluorescence-Guided Surgery of Brain Tumors: Evidence, Techniques, and Practical Experience[J]. Frontiers in surgery, 6, 11(2019).

    [46] VUIJK F A, HILLING D E, MIEOG J S D et al. Fluorescent-guided surgery for sentinel lymph node detection in gastric cancer and carcinoembryonic antigen targeted fluorescent-guided surgery in colorectal and pancreatic cancer[J]. Journal of surgical oncology, 118, 315-323(2018).

    [47] CARR J A, FRANKE D, CARAM J R et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green[J]. Proc Natl Acad Sci U S A, 115, 4465-4470(2018).

    [48] ZHANG W, HU Z, TIAN J et al. A narrative review of near-infrared fluorescence imaging in hepatectomy for hepatocellular carcinoma[J]. Ann Transl Med, 9, 171(2021).

    [49] SUN Y, DING M, ZENG X et al. Novel bright-emission small-molecule NIR-II fluorophores for in vivo tumor imaging and image-guided surgery[J]. Chemical science, 8, 3489-3493(2017).

    [50] LI C, CAO L, ZHANG Y et al. Preoperative Detection and Intraoperative Visualization of Brain Tumors for More Precise Surgery: A New Dual-Modality MRI and NIR Nanoprobe[J]. Small (Weinheim an der Bergstrasse, Germany), 11, 4517-4525(2015).

    [51] WEN Q, ZHANG Y, LI C et al. NIR-II Fluorescent Self-Assembled Peptide Nanochain for Ultrasensitive Detection of Peritoneal Metastasis[J]. Angewandte Chemie (International ed in English), 58, 11001-11006(2019).

    [52] WANG P, FAN Y, LU L et al. NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer[J]. Nature communications, 9, 2898(2018).

    [53] YANG Y, CHEN M, WANG P et al. Highly thermal stable RNase A@PbS/ZnS quantum dots as NIR-IIb image contrast for visualizing temporal changes of microvasculature remodeling in flap[J]. J Nanobiotechnology, 20, 128(2022).

    [54] DONG S, FENG S, CHEN Y et al. Nerve Suture Combined With ADSCs Injection Under Real-Time and Dynamic NIR-II Fluorescence Imaging in Peripheral Nerve Regeneration in vivo[J]. Front Chem, 9, 676928(2021).

    [55] FAN X, XIA Q, LIU S et al. NIR-II and visible fluorescence hybrid imaging-guided surgery via aggregation-induced emission fluorophores cocktails[J]. Mater Today Bio, 16, 100399(2022).

    [56] SUNG H, FERLAY J, SIEGEL R L et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 71, 209-249(2021).

    [57] DESANTIS C E, LIN C C, MARIOTTO A B et al. Cancer treatment and survivorship statistics, 2014[J]. CA Cancer J Clin, 64, 252-271(2014).

    [58] ZHANG Z, FANG C, ZHANG Y et al. NIR-II nano fluorescence image guided hepatic carcinoma resection on cirrhotic patient[J]. Photodiagnosis Photodyn Ther, 40, 103098(2022).

    [59] WANG X, TEH C S C, ISHIZAWA T et al. Consensus Guidelines for the Use of Fluorescence Imaging in Hepatobiliary Surgery[J]. Ann Surg, 274, 97-106(2021).

    [60] SHI X, ZHANG Z, ZHANG Z et al. Near-Infrared Window II Fluorescence Image-Guided Surgery of High-Grade Gliomas Prolongs the Progression-Free Survival of Patients[J]. IEEE Trans Biomed Eng, 69, 1889-1900(2022).

    [61] CAO C, JIN Z, SHI X et al. First Clinical Investigation of Near-Infrared Window IIa/IIb Fluorescence Imaging for Precise Surgical Resection of Gliomas[J]. IEEE Trans Biomed Eng, 69, 2404-2413(2022).

    [62] SHEN B, ZHANG Z, SHI X et al. Real-time intraoperative glioma diagnosis using fluorescence imaging and deep convolutional neural networks[J]. Eur J Nucl Med Mol Imaging, 48, 3482-3492(2021).

    [63] ROB L, HALASKA M, ROBOVA H. Nerve-sparing and individually tailored surgery for cervical cancer[J]. Lancet Oncol, 11, 292-301(2010).

    [64] QU Q, NIE H, HOU S et al. Visualisation of pelvic autonomic nerves using NIR-II fluorescence imaging[J]. Eur J Nucl Med Mol Imaging, 49, 4752-4754(2022).

    [65] CAO C, DENG S, WANG B et al. Intraoperative near-infrared II window fluorescence imaging-assisted nephron-sparing surgery for complete resection of cystic renal masses[J]. Clin Transl Med, 11, e604(2021).

    [66] HINDMAN N M. Imaging of Cystic Renal Masses[J]. Radiologic clinics of North America, 55, 259-277(2017).

    [67] PRADERE B, PEYRONNET B, DELPORTE G et al. Intraoperative Cyst Rupture during Partial Nephrectomy for Cystic Renal Masses-Does it Increase the Risk of Recurrence?[J]. The Journal of urology, 200, 1200-1206(2018).

    [68] VAN KEULEN S, HOM M, WHITE H et al. The Evolution of Fluorescence-Guided Surgery[J]. Mol Imaging Biol, 25, 36-45(2023).

    [69] WU Y, SUO Y, WANG Z et al. First clinical applications for the NIR-II imaging with ICG in microsurgery[J]. Front Bioeng Biotechnol, 10, 1042546(2022).

    Tools

    Get Citation

    Copy Citation Text

    Hu-Wei NI, Jun QIAN. Clinical research progress on the fluorescence imaging in the second near-infrared window[J]. Journal of Infrared and Millimeter Waves, 2023, 42(6): 895

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Mar. 15, 2023

    Accepted: --

    Published Online: Dec. 26, 2023

    The Author Email: Jun QIAN (qianjun@zju.edu.cn)

    DOI:10.11972/j.issn.1001-9014.2023.06.023

    Topics