Acta Optica Sinica, Volume. 32, Issue 10, 1006002(2012)

Theoretical and Experimental Investigation of Fiber Bragg Gratings Written in Multilayer Single Mode Fibers

Zheng Jingjing1,2、*, Wen Yinghong2, Qi Chunhui1, Pei Li1, Wei Huai1, Ning Tigang1, and Jian Shuisheng1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(31)

    [1] [1] A. M. Vengsarkar, W. A. Reed. Dispersion-compensating single-mode fibers: efficient designs for first- and second-order compensation[J]. Opt. Lett., 1993, 18(11): 924~926

    [2] [2] Lars Grüner-Nielsen, Marie Wandel, Poul Kristensen et al.. Dispersion-compensating fibers[J]. J. Lightwave Technol., 2005, 23(11): 3566

    [3] [3] Xiangqing Tian, Xiaoping Zhang. Dispersion-flattened designs of the large effective-area single-mode fibers with ring index profiles[J]. Opt. Commun., 2004, 230(1-3): 105~113

    [4] [4] Shizhuo Yin, Kun-Wook Chung, Hongyu Liu et al.. A new design for non-zero dispersion-shifted fiber (NZ-DSF) with a large effective area over 100 μm and low bending and splice loss[J]. Opt. Commun., 2000, 177(1-6): 225~232

    [5] [5] Stig Knudsen, Torben Veng. Large effective area dispersion compensating fiber for cabled compensation of standard single mode fiber [C]. Optical Fiber Communication Conference 2000. TuGS

    [6] [6] N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson et al.. Large mode area fibers for high power applications[J]. Opt. Fiber Technol., 1999, 5(2): 185~196

    [7] [7] T. Erdogan. Fiber grating spectra[J]. J. Lightwave Technol., 1997, 15(8): 1277~1294

    [8] [8] C. R. Giles. Lightwave applications of fiber Bragg gratings[J]. J. Lightwave Technol., 1997, 15(8): 1391~1404

    [9] [9] K. O. HillG. Meltz. Fiber Bragg grating technology fundamentals and overview[J]. J. Lightwave Technol., 1997, 15(8): 1263~1276

    [10] [10] A. D. Kersey, M. A. Davis, H. J. Patrick et al.. Fiber grating sensors[J]. J. Lightwave Technol., 1997, 15(8): 1442~1463

    [12] [12] Jiacheng Hu, Fuchang Chen, Chengtao Zhang et al.. Application of high-precision temperature-controlled FBG filter and light source self-calibration technique in the BOTDR sensor system[J]. Chin. Opt. Lett., 2012, 10(7): 072901

    [13] [13] Zhang Le, Wu Bo, Ye Wen et al.. Highly sensitive fiber-optic vibration sensor based on frequency-locking of a FBG Fabry-Perot cavity[J]. Acta Optica Sinica, 2011, 31(4): 0406006

    [17] [17] G. E. Villanueva, P. Perez-Millan, J. Palaci et al.. Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing[J]. Photon. Technol. Lett., 2010, 22(4): 254~256

    [18] [18] Faxiang Zhang, Wentao Zhang, Fang Li et al.. DFB fiber laser hydrophone with band-pass response[J]. Opt. Lett., 2011, 36(22): 4320~4322

    [21] [21] A. W. Snyder, J. D. Love. Optical Waveguide Theory[M]. New York: Chapman and Hall, 1983

    [22] [22] Chongqing Wu. Optical Waveguide Theory[M]. Beijing:Tsinghua University Press, 2005

    [23] [23] Allan W. Snyder. Coupled-mode theory for optical fibers[J]. J. Opt. Soc. Am., 1972, 62(11): 1267~1277

    [24] [24] Wei-ping Huang. Coupled-mode theory for optical waveguides: an overview[J]. J. Opt. Soc. Am. A, 1994, 11(3): 963~983

    [25] [25] G. Meltz, W. W. Morey, W. H. Glenn. Formation of Bragg gratings in optical fibers by a transverse holographic method[J]. Opt. Lett., 1989, 14(15): 823~825

    [26] [26] L. Dong, J. L. Archambault, E. Taylor et al.. Photosensitivity in tantalum-doped silica optical fibers[J]. J. Opt. Soc. Am. B, 1995, 12(9): 1747~1750

    [27] [27] P. L. Swart, A. A. Chtcherbakov, W. L. Joubert et al.. Study of the pressure dependence of hydrogen diffusion in optical fiber by an interferometric technique[J]. Opt. Commun., 2003, 217(1-6): 189~196

    [28] [28] P. J. Lemaire, R. M. Atkins, V. Mizrahi et al.. High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres[J]. Electron. Lett., 1993, 29(13): 1191~1193

    [29] [29] Hideo Hosono, Yoshihiro Abe, Donald L. Kinser et al.. Nature and origin of the 5-eV band in SiO2GeO2 glasses[J]. Phys. Rev. B, 1992, 46(18): 11445~11451

    [30] [30] T. E. Tsai, C. G. AskinsE. J. Friebele. Photoinduced grating and intensity dependence of defect generation in Ge-doped silica optical fiber[J]. Appl. Phys. Lett., 1992, 61(4): 390~392

    [31] [31] D. L. Williams, B. J. Ainslie, J. R. Armitage et al.. Enhanced UV photosensitivity in boron codoped germanosilicate fibres[J]. Electron. Lett., 1993, 29(1): 45

    CLP Journals

    [1] Li Yigui, Sugiyama Susumu. Fabrication of Metal Nano Grating Mold Based on Synchrotron Radiation Lithography and Nano Electroforming Process[J]. Chinese Journal of Lasers, 2014, 41(11): 1106002

    Tools

    Get Citation

    Copy Citation Text

    Zheng Jingjing, Wen Yinghong, Qi Chunhui, Pei Li, Wei Huai, Ning Tigang, Jian Shuisheng. Theoretical and Experimental Investigation of Fiber Bragg Gratings Written in Multilayer Single Mode Fibers[J]. Acta Optica Sinica, 2012, 32(10): 1006002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Apr. 12, 2012

    Accepted: --

    Published Online: Jul. 2, 2012

    The Author Email: Zheng Jingjing (jjzheng.c@gmail.com)

    DOI:10.3788/aos201232.1006002

    Topics