Laser & Optoelectronics Progress, Volume. 61, Issue 4, 0411002(2024)
Phase Compensation Algorithm for Off-Axis Digital Holography Based on a Radial Basis Function Neural Network(Invited)
[1] Cacace T, Bianco V, Ferraro P. Quantitative phase imaging trends in biomedical applications[J]. Optics and Lasers in Engineering, 135, 106188(2020).
[2] Lee K R, Kim K, Jung J et al. Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications[J]. Sensors, 13, 4170-4191(2013).
[3] Man T L, Wan Y H, Jian M J et al. Research progress in optical interference microscopy toward three-dimensional imaging of biological samples[J]. Chinese Journal of Lasers, 49, 1507202(2022).
[4] Shen Q A, Li Z S, Sun J S et al. Live-cell analysis framework for quantitative phase imaging with slightly off-axis digital holographic microscopy[J]. Frontiers in Photonics, 3, 1083139(2022).
[5] Tao S Q, Kong M, Liu W et al. Microchannel detection based on dual-wavelength image-plane digital holographic microscopy[J]. Acta Optica Sinica, 43, 0509001(2023).
[6] Pang Z T, Zhang H, Wang Y et al. Recognition of multiscale dense gel filament-droplet field in digital holography with Mo-U-net[J]. Frontiers in Physics, 9, 742296(2021).
[7] Liu Y K, Xiao W, Che L P et al. Cancer cell vacuolization imaging based on digital holographic microscopy tomography[J]. Chinese Journal of Lasers, 49, 2007209(2022).
[8] Shaked N T, Micó V, Trusiak M et al. Off-axis digital holographic multiplexing for rapid wavefront acquisition and processing[J]. Advances in Optics and Photonics, 12, 556(2020).
[9] Li F, Wang M Q, Zheng M et al. Numerical reference plane algorithm for effectively solving tilt distortion of a phase image in digital off-axis holography[J]. Acta Physica Sinica, 67, 094202(2018).
[10] Takeda M, Ina H, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. Review of Scientific Instruments, 72, 156-160(1982).
[11] Hao B G, Shan M G, Zhi Z et al. Parallel two-step spatial carrier phase-shifting interferometric phase microscopy with fast phase retrieval[J]. Journal of Optics, 17, 035602(2015).
[12] Panezai S, Wang D Y, Zhao J et al. Direct and complete calibration of phase modulation depth of LCOS by using double exposure digital holography[J]. Proceedings of SPIE, 9045, 90450N(2013).
[13] Qu W J, Choo C O, Tan Rongwei L et al. Physical spherical phase compensation in reflection digital holographic microscopy[J]. Optics and Lasers in Engineering, 50, 563-567(2012).
[14] Miccio L, Alfieri D, Grilli S et al. Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram[J]. Applied Physics Letters, 90, 041104(2007).
[15] Zhang D S, Fan J P, Zhao H et al. Error evaluation for Zernike polynomials fitting based phase compensation of digital holographic microscopy[J]. Optik, 125, 5148-5152(2014).
[16] Di J L, Zhao J L, Sun W W et al. Phase aberration compensation of digital holographic microscopy based on least squares surface fitting[J]. Optics Communications, 282, 3873-3877(2009).
[17] Fan Q, Yang H R, Li G P et al. Suppressing carrier removal error in the Fourier transform method for interferogram analysis[J]. Journal of Optics, 12, 115401(2010).
[18] Sun J S, Chen Q A, Zhang Y Z et al. Optimal principal component analysis-based numerical phase aberration compensation method for digital holography[J]. Optics Letters, 41, 1293(2016).
[19] Zuo C, Chen Q A, Qu W J et al. Phase aberration compensation in digital holographic microscopy based on principal component analysis[J]. Optics Letters, 38, 1724-1726(2013).
[20] Hu L J, Hu S W, Gong W et al. Learning-based Shack-Hartmann wavefront sensor for high-order aberration detection: erratum[J]. Optics Express, 28, 32132(2020).
[21] Guo H Y, Xu Y J, Li Q et al. Improved machine learning approach for wavefront sensing[J]. Sensors, 19, 3533(2019).
[22] Ronneberger O, Fischer P, Brox T, Navab N, Hornegger J, Wells W M et al. U-net: convolutional networks for biomedical image segmentation[M]. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture notes in computer science, 9351, 234-241(2015).
[23] Nguyen T, Bui V, Lam V et al. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection[J]. Optics Express, 25, 15043-15057(2017).
[24] Esposito A, Marinaro M, Oricchio D et al. Approximation of continuous and discontinuous mappings by a growing neural RBF-based algorithm[J]. Neural Networks, 13, 651-665(2000).
[25] Ferraro P, De Nicola S, Finizio A et al. Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging[J]. Applied Optics, 42, 1938-1946(2003).
[26] Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 9, 62-66(1979).
Get Citation
Copy Citation Text
Youzhou Shi, Yihui Wu, Wenchao Zhou. Phase Compensation Algorithm for Off-Axis Digital Holography Based on a Radial Basis Function Neural Network(Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(4): 0411002
Category: Imaging Systems
Received: Apr. 18, 2023
Accepted: May. 29, 2023
Published Online: Feb. 22, 2024
The Author Email: Wenchao Zhou (zhouvc@ciomp.ac.cn)
CSTR:32186.14.LOP231110