Laser & Optoelectronics Progress, Volume. 61, Issue 4, 0411002(2024)

Phase Compensation Algorithm for Off-Axis Digital Holography Based on a Radial Basis Function Neural Network(Invited)

Youzhou Shi1,2, Yihui Wu1, and Wenchao Zhou1、*
Author Affiliations
  • 1Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, Jilin , China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(26)

    [1] Cacace T, Bianco V, Ferraro P. Quantitative phase imaging trends in biomedical applications[J]. Optics and Lasers in Engineering, 135, 106188(2020).

    [2] Lee K R, Kim K, Jung J et al. Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications[J]. Sensors, 13, 4170-4191(2013).

    [3] Man T L, Wan Y H, Jian M J et al. Research progress in optical interference microscopy toward three-dimensional imaging of biological samples[J]. Chinese Journal of Lasers, 49, 1507202(2022).

    [4] Shen Q A, Li Z S, Sun J S et al. Live-cell analysis framework for quantitative phase imaging with slightly off-axis digital holographic microscopy[J]. Frontiers in Photonics, 3, 1083139(2022).

    [5] Tao S Q, Kong M, Liu W et al. Microchannel detection based on dual-wavelength image-plane digital holographic microscopy[J]. Acta Optica Sinica, 43, 0509001(2023).

    [6] Pang Z T, Zhang H, Wang Y et al. Recognition of multiscale dense gel filament-droplet field in digital holography with Mo-U-net[J]. Frontiers in Physics, 9, 742296(2021).

    [7] Liu Y K, Xiao W, Che L P et al. Cancer cell vacuolization imaging based on digital holographic microscopy tomography[J]. Chinese Journal of Lasers, 49, 2007209(2022).

    [8] Shaked N T, Micó V, Trusiak M et al. Off-axis digital holographic multiplexing for rapid wavefront acquisition and processing[J]. Advances in Optics and Photonics, 12, 556(2020).

    [9] Li F, Wang M Q, Zheng M et al. Numerical reference plane algorithm for effectively solving tilt distortion of a phase image in digital off-axis holography[J]. Acta Physica Sinica, 67, 094202(2018).

    [10] Takeda M, Ina H, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. Review of Scientific Instruments, 72, 156-160(1982).

    [11] Hao B G, Shan M G, Zhi Z et al. Parallel two-step spatial carrier phase-shifting interferometric phase microscopy with fast phase retrieval[J]. Journal of Optics, 17, 035602(2015).

    [12] Panezai S, Wang D Y, Zhao J et al. Direct and complete calibration of phase modulation depth of LCOS by using double exposure digital holography[J]. Proceedings of SPIE, 9045, 90450N(2013).

    [13] Qu W J, Choo C O, Tan Rongwei L et al. Physical spherical phase compensation in reflection digital holographic microscopy[J]. Optics and Lasers in Engineering, 50, 563-567(2012).

    [14] Miccio L, Alfieri D, Grilli S et al. Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram[J]. Applied Physics Letters, 90, 041104(2007).

    [15] Zhang D S, Fan J P, Zhao H et al. Error evaluation for Zernike polynomials fitting based phase compensation of digital holographic microscopy[J]. Optik, 125, 5148-5152(2014).

    [16] Di J L, Zhao J L, Sun W W et al. Phase aberration compensation of digital holographic microscopy based on least squares surface fitting[J]. Optics Communications, 282, 3873-3877(2009).

    [17] Fan Q, Yang H R, Li G P et al. Suppressing carrier removal error in the Fourier transform method for interferogram analysis[J]. Journal of Optics, 12, 115401(2010).

    [18] Sun J S, Chen Q A, Zhang Y Z et al. Optimal principal component analysis-based numerical phase aberration compensation method for digital holography[J]. Optics Letters, 41, 1293(2016).

    [19] Zuo C, Chen Q A, Qu W J et al. Phase aberration compensation in digital holographic microscopy based on principal component analysis[J]. Optics Letters, 38, 1724-1726(2013).

    [20] Hu L J, Hu S W, Gong W et al. Learning-based Shack-Hartmann wavefront sensor for high-order aberration detection: erratum[J]. Optics Express, 28, 32132(2020).

    [21] Guo H Y, Xu Y J, Li Q et al. Improved machine learning approach for wavefront sensing[J]. Sensors, 19, 3533(2019).

    [22] Ronneberger O, Fischer P, Brox T, Navab N, Hornegger J, Wells W M et al. U-net: convolutional networks for biomedical image segmentation[M]. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture notes in computer science, 9351, 234-241(2015).

    [23] Nguyen T, Bui V, Lam V et al. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection[J]. Optics Express, 25, 15043-15057(2017).

    [24] Esposito A, Marinaro M, Oricchio D et al. Approximation of continuous and discontinuous mappings by a growing neural RBF-based algorithm[J]. Neural Networks, 13, 651-665(2000).

    [25] Ferraro P, De Nicola S, Finizio A et al. Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging[J]. Applied Optics, 42, 1938-1946(2003).

    [26] Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 9, 62-66(1979).

    Tools

    Get Citation

    Copy Citation Text

    Youzhou Shi, Yihui Wu, Wenchao Zhou. Phase Compensation Algorithm for Off-Axis Digital Holography Based on a Radial Basis Function Neural Network(Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(4): 0411002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Apr. 18, 2023

    Accepted: May. 29, 2023

    Published Online: Feb. 22, 2024

    The Author Email: Wenchao Zhou (zhouvc@ciomp.ac.cn)

    DOI:10.3788/LOP231110

    CSTR:32186.14.LOP231110

    Topics