Journal of Synthetic Crystals, Volume. 51, Issue 6, 1099(2022)

Research Progress on the Perovskite and Perovskite-Like Thermochromic Single Crystal Materials

WU Xindong*, ZHANG Chao, and LIU Xiaolin
Author Affiliations
  • [in Chinese]
  • show less
    References(51)

    [1] [1] LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107): 643-647.

    [2] [2] LIU M, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501(7467): 395-398.

    [3] [3] LI X, BI D Q, YI C Y, et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells[J]. Science, 2016, 353(6294): 58-62.

    [4] [4] XING G C, MATHEWS N, SUN S Y, et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 342(6156): 344-347.

    [5] [5] STRANKS S D, BURLAKOV V M, LEIJTENS T, et al. Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states[J]. Physical Review Applied, 2014, 2(3): 034007.

    [6] [6] LIN J, LAI M, DOU L, et al. Thermochromic halide perovskite solar cells[J]. Nature Materials, 2018, 17(3): 261-267.

    [7] [7] HALDER A, CHOUDHURY D, GHOSH S, et al. Exploring thermochromic behavior of hydrated hybrid perovskites in solar cells[J]. The Journal of Physical Chemistry Letters, 2015, 6(16): 3180-3184.

    [8] [8] LIU S, DU Y W, TSO C Y, et al. Organic hybrid perovskite (MAPbI3-xClx) for thermochromic smart window with strong optical regulation ability, low transition temperature, and narrow hysteresis width[J]. Advanced Functional Materials, 2021, 31(26): 2010426.

    [9] [9] ZHANG Y, WANG Z Y, HU S, et al. Robust and swiftly reversible thermochromic behavior of a 2D perovskite of (C6H4(CH2NH3)2)(CH3NH3)[Pb2I7] for smart window and photovoltaic smart window applications[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 12042-12048.

    [10] [10] WHEELER L M, MOORE D T, IHLY R, et al. Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide[J]. Nature Communications, 2017, 8: 1722.

    [11] [11] BILLING D G, LEMMERER A. Synthesis, characterization and phase transitions in the inorganic-organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4], n=4, 5 and 6[J]. Acta Crystallographica Section B, 2007, 63(5): 735-747.

    [12] [12] LEMMERER A, BILLING D G. Synthesis, characterization and phase transitions of the inorganic-organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4], n=7, 8, 9 and 10[J]. Dalton Transactions, 2012, 41(4): 1146-1157.

    [13] [13] BILLING D G, LEMMERER A. Synthesis, characterization and phase transitions of the inorganic-organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4](n=12, 14, 16 and 18)[J]. New Journal of Chemistry, 2008, 32(10): 1736.

    [14] [14] GHOSH D, ACHARYA D, ZHOU L, et al. Lattice expansion in hybrid perovskites: effect on optoelectronic properties and charge carrier dynamics[J]. The Journal of Physical Chemistry Letters, 2019, 10(17): 5000-5007.

    [15] [15] FU H M, JIANG C L, LUO C H, et al. A quasi-two-dimensional copper based organic-inorganic hybrid perovskite with reversible thermochromism and ferromagnetism[J]. European Journal of Inorganic Chemistry, 2021, 2021(47): 4984-4989.

    [16] [16] DUTTA S, VISHNU S K D, SOM S, et al. Segmented highly reversible thermochromic layered perovskite [(CH2)2(NH3)2]CuCl4 crystal coupled with an inverse magnetocaloric effect[J]. ACS Applied Electronic Materials, 2022, 4(1): 521-530.

    [17] [17] LI W Z, RAHMAN N U, XIAN Y M, et al. Regulation of the order-disorder phase transition in a Cs2NaFeCl6 double perovskite towards reversible thermochromic application[J]. Journal of Semiconductors, 2021, 42(7): 072202.

    [18] [18] ZHANG W C, SUN Z H, ZHANG J, et al. Thermochromism to tune the optical bandgap of a lead-free perovskite-type hybrid semiconductor for efficiently enhancing photocurrent generation[J]. Journal of Materials Chemistry C, 2017, 5(38): 9967-9971.

    [19] [19] MAιCZKA M, PTAK M, GAιGOR A, et al. Layered lead iodide of [methylhydrazinium]2PbI4 with a reduced band gap: thermochromic luminescence and switchable dielectric properties triggered by structural phase transitions[J]. Chemistry of Materials, 2019, 31(20): 8563-8575.

    [20] [20] NING W H, ZHAO X G, KLARBRING J, et al. Thermochromic lead-free halide double perovskites[J]. Advanced Functional Materials, 2019, 29(10): 1807375.

    [21] [21] AKKERMAN Q A, MANNA L. What defines a halide perovskite?[J]. ACS Energy Letters, 2020, 5(2): 604-610.

    [22] [22] WANG X J, LI T S, XING B Y, et al. Metal halide semiconductors beyond lead-based perovskites for promising optoelectronic applications[J]. The Journal of Physical Chemistry Letters, 2021, 12(43): 10532-10550.

    [23] [23] MITZI D B. Synthesis, structure, and properties of organic-inorganic perovskites and related materials[J].Progress in Inorganic Chemistry, 1999, 48: 1-121.

    [24] [24] SAPAROV B, MITZI D B. Organic-inorganic perovskites: structural versatility for functional materials design[J]. Chemical Reviews, 2016, 116(7): 4558-4596.

    [25] [25] MACZKA M, PTAK M, GAGOR A, et al. Methylhydrazinium lead bromide: noncentrosymmetric three-dimensional perovskite with exceptionally large framework distortion and green photoluminescence[J]. Chemistry of Materials, 2020, 32(4): 1667-1673.

    [26] [26] NEUTZNER S, THOUIN F, CORTECCHIA D, et al. Erratum: exciton-polaron spectral structures in two-dimensional hybrid lead-halide perovskites[J]. Physical Review Materials, 2020, 4(5): 059901.

    [27] [27] THOUIN F, NEUTZNER S, CORTECCHIA D, et al. Stable biexcitons in two-dimensional metal-halide perovskites with strong dynamic lattice disorder[J]. Physical Review Materials, 2018, 2(3): 034001.

    [28] [28] YANGUI A, SY M, LI L, et al. Rapid and robust spatiotemporal dynamics of the first-order phase transition in crystals of the organic-inorganic perovskite (C12H25NH3)2PbI4[J]. Scientific Reports, 2015, 5: 16634.

    [29] [29] YU S K, ZHANG Z R, REN Z H, et al. 2D lead iodide perovskite with mercaptan-containing amine and its exceptional water stability[J]. Inorganic Chemistry, 2021, 60(12): 9132-9140.

    [30] [30] XIE G Y, WANG L, JU D X, et al. Thermochromism perovskite (COOH(CH2)3NH3)2PbI4 crystals: single-crystal to single-crystal phase transition and excitation-wavelength-dependent emission[J]. The Journal of Physical Chemistry Letters, 2022, 13(1): 214-221.

    [31] [31] ZENG Y L, HUANG X Q, HUANG C R, et al. Unprecedented 2D homochiral hybrid lead-iodide perovskite thermochromic ferroelectrics with ferroelastic switching[J]. Angewandte Chemie, 2021, 133(19): 10825-10830.

    [32] [32] ZHAO Z R, GU F D, LI Y L, et al. Mixed-organic-cation tin iodide for lead-free perovskite solar cells with an efficiency of 8.12%[J]. Advanced Science, 2017, 4(11): 1700204.

    [33] [33] MENG W W, WANG X M, XIAO Z W, et al. Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites[J]. The Journal of Physical Chemistry Letters, 2017, 8(13): 2999-3007.

    [34] [34] QIAN L, SUN Y L, WU M M, et al. A lead-free two-dimensional perovskite for a high-performance flexible photoconductor and a light-stimulated synaptic device[J]. Nanoscale, 2018, 10(15): 6837-6843.

    [35] [35] ZIMMERMANN I, AGHAZADA S, NAZEERUDDIN M K. Lead and HTM free stable two-dimensional tin perovskites with suitable band gap for solar cell applications[J]. Angewandte Chemie International Edition, 2019, 58(4): 1072-1076.

    [36] [36] AREND H, HUBER W, MISCHGOFSKY F H, et al. Layer perovskites of the (CnH2n+1NH3)2MX4 and NH3(CH2)mNH3MX4 families with M=Cd, Cu, Fe, Mn or Pd and X=Cl or Br: importance, solubilities and simple growth techniques[J]. Journal of Crystal Growth, 1978, 43(2): 213-223.

    [37] [37] CARETTA A, MIRANTI R, ARKENBOUT A H, et al. Thermochromic effects in a Jahn-Teller active CuCl4-6 layered hybrid system[J]. Journal of Physics Condensed Matter, 2013, 25(50): 505901.

    [38] [38] LI J W, LIU X L, CUI P X, et al. Lead-free thermochromic perovskites with tunable transition temperatures for smart window applications[J]. Science China Chemistry, 2019, 62(9): 1257-1262.

    [39] [39] ELATTAR A, SUZUKI H, MISHIMA R, et al. Single crystal of two-dimensional mixed-halide copper-based perovskites with reversible thermochromism[J]. Journal of Materials Chemistry C, 2021, 9(9): 3264-3270.

    [40] [40] PAREJA-RIVERA C, SOLIS-IBARRA D. Reversible and irreversible thermochromism in copper-based halide perovskites[J]. Advanced Optical Materials, 2021, 9(15): 2100633.

    [41] [41] LIU J C, LIAO W Q, LI P F, et al. A molecular thermochromic ferroelectric[J]. Angewandte Chemie, 2020, 132(9): 3523-3527.

    [42] [42] HUANG C R, LUO X Z, CHEN X G, et al. A multiaxial lead-free two-dimensional organic-inorganic perovskite ferroelectric[J]. National Science Review, 2020, 8(5): nwaa232.

    [43] [43] SUN B, LIU X F, LI X Y, et al. Reversible thermochromism and strong ferromagnetism in two-dimensional hybrid perovskites[J]. Angewandte Chemie International Edition, 2020, 59(1): 203-208.

    [44] [44] GUO W Q, LIU X T, HAN S G, et al. Room-temperature ferroelectric material composed of a two-dimensional metal halide double perovskite for X-ray detection[J]. Angewandte Chemie International Edition, 2020, 59(33): 13879-13884.

    [45] [45] WANG C F, LI H J, LI M G, et al. Centimeter-sized single crystals of two-dimensional hybrid iodide double perovskite (4, 4-difluoropiperidinium)4AgBiI8 for high-temperature ferroelectricity and efficient X-ray detection[J]. Advanced Functional Materials, 2021, 31(13): 2009457.

    [46] [46] WANG M J, CHEN X R, TONG Y B, et al. Phase transition, dielectrics, single-ion conductance, and thermochromic luminescence of a inorganic-organic hybrid of triethylpropylammonium PbI3[J]. Inorganic Chemistry, 2017, 56(16): 9525-9534.

    [47] [47] JIA Q Q, LUO Q F, NI H F, et al. High-sensitivity organic-inorganic hybrid materials with reversible thermochromic property and dielectric switching[J]. The Journal of Physical Chemistry C, 2022, 126(3): 1552-1557.

    [48] [48] LIU G F, LIU J, SUN Z H, et al. Thermally induced reversible double phase transitions in an organic-inorganic hybrid iodoplumbate C4H12NPbI3 with symmetry breaking[J]. Inorganic Chemistry, 2016, 55(16): 8025-8030.

    [49] [49] ZHAO X C, FU Y K, LEI Y L, et al. Crystal structure and thermochromic behavior of the quasi-0D lead-free organic-inorganic hybrid compounds (C7H9NF)8M4I16 (M=Bi, Sb)[J]. Journal of Alloys and Compounds, 2022, 899: 163278.

    [50] [50] SHARMA M, YANGUI A, LUSSON A, et al. Additive-assisted synthesis and optoelectronic properties of (CH3NH3)4Bi6I22[J]. Inorganic Chemistry Frontiers, 2020, 7(7): 1564-1572.

    [51] [51] SINGH A, SATAPATHI S. Reversible thermochromism in all-inorganic lead-free Cs3Sb2I9 perovskite single crystals[J]. Advanced Optical Materials, 2021, 9(22): 2101062.

    CLP Journals

    [1] SONG Yan, WANG Lu, CHEN Mingxing, WEI Rongmin, LI Xinhui, JIA Zhen, XIA Mingjun. Bright Broadband Green Photoluminescence of CsCdCl3 Metal Halides Achieved by Heterovalent Cation Substitution[J]. Journal of Synthetic Crystals, 2023, 52(2): 307

    Tools

    Get Citation

    Copy Citation Text

    WU Xindong, ZHANG Chao, LIU Xiaolin. Research Progress on the Perovskite and Perovskite-Like Thermochromic Single Crystal Materials[J]. Journal of Synthetic Crystals, 2022, 51(6): 1099

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 4, 2022

    Accepted: --

    Published Online: Aug. 13, 2022

    The Author Email: Xindong WU (2311679894@qq.com)

    DOI:

    CSTR:32186.14.

    Topics