Laser & Optoelectronics Progress, Volume. 61, Issue 22, 2212001(2024)

Disease Detection Method of Ancient City Wall Based on Multi-Data Feature Fusion

Xudong Liu1, Ying Lu1, Huiqin Wang1、*, Ke Wang1, Zhan Wang2, and Yuan Li3
Author Affiliations
  • 1School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi , China
  • 2Shaanxi Academy of Cultural Relics Protection, Xi'an 710075, Shaanxi , China
  • 3Xi'an Museum, Xi'an 710074, Shaanxi , China
  • show less
    Figures & Tables(15)
    Spatial-spectral feature extraction module structure diagram
    Texture-color feature extraction module structure diagram
    Multi-data feature fusion network structure diagram
    Multi-data on the wall surface. (a) Multi-spectral image data of the city walls; (b) color image data of the city walls
    Color images of diseases on the wall surface. (a) Color image of a city wall disease; (b) salting out disease; (c) biological disease;(d) spalling disease; (e) basal brick
    Reflectance curves of various diseases on the wall surface
    Images of the target area of the city wall. (a) False-color image of the target area of the city wall; (b) marking of the target area of the city wall
    Classification accuracy under multi-source data
    Visualization of classification results under different data sources. (a) Fusion data; (b) MS data; (c) RGB data
    Compare algorithm classification results
    Visualization of city wall disease distribution map under different algorithms. (a) False color images; (b) SVM; (c) RF; (d) 2D-CNN; (e) 3D-CNN; (f) SSRN; (g) EndNet; (h) SSPCNN; (i) proposed algorithm
    • Table 1. Wall detection area sample set division

      View table

      Table 1. Wall detection area sample set division

      ClassClass nameLabel
      TrainValidationTestTotal
      1Mild biological disease151675853067580
      2Severe biological disease314615731101215731
      3Weak salting out21811090763510907
      4Strong salting out291914601021814598
      5Spalling20601030721210304
      6Basal brick27101355948513550
    • Table 2. Comparison table of results of ablation experiment evaluation

      View table

      Table 2. Comparison table of results of ablation experiment evaluation

      CategoryMSRGBMS+RGB
      LpLcLloss
      OA89.8384.4191.6394.1796.46
      Severe biological disease96.3480.2596.8396.7497.26
      Mild biological disease98.2582.9096.2597.9398.13
      Strong salting out94.0780.2494.4995.3196.54
      Weak salting out80.5683.6495.4292.0497.08
      Spalling46.2382.9785.1391.5293.51
      Basal brick74.3794.2395.9196.3298.76
    • Table 3. Detection results of different algorithms on wall diseases

      View table

      Table 3. Detection results of different algorithms on wall diseases

      CategorySVMRFCNN3D-CNNSSRNEndNetSSPCNNProposed algorithm
      Severe biological disease71.4374.2889.3286.4694.2196.7795.3197.26
      Mild biological disease79.3973.1583.6188.6892.5194.1396.2198.13
      Strong salting out82.1782.5079.0888.3796.7395.1893.1596.54
      Weak salting out90.6492.3779.5691.3490.0593.4294.9797.08
      Spalling0069.3681.0986.2588.3191.5993.51
      Basal brick93.8193.3995.2196.5296.4193.2394.4098.76
      OA82.4985.5190.8391.9494.9693.7394.6896.46
      Kappa71.3380.8984.2887.1792.4191.1692.3794.20
    • Table 4. Subjective evaluation results of various diseases of the city wall

      View table

      Table 4. Subjective evaluation results of various diseases of the city wall

      AlgorithmSevere biological diseaseMild biological diseaseStrong salting outWeak salting outSpalling
      SVMGeneralGeneralBetterBetterVery bad
      RFGeneralGeneralBetterBetterVery bad
      2D-CNNPoorPoorGeneralGeneralGeneral
      3D-CNNPoorGeneralGeneralBetterGeneral
      SSUNBetterBetterBetterBetterGeneral
      EndNetBetterVery goodBetterVery goodVery good
      SSPCNNBetterVery goodBetterVery goodVery good
      Proposed algorithmVery goodVery goodBetterVery goodVery good
    Tools

    Get Citation

    Copy Citation Text

    Xudong Liu, Ying Lu, Huiqin Wang, Ke Wang, Zhan Wang, Yuan Li. Disease Detection Method of Ancient City Wall Based on Multi-Data Feature Fusion[J]. Laser & Optoelectronics Progress, 2024, 61(22): 2212001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Nov. 22, 2023

    Accepted: Mar. 7, 2024

    Published Online: Nov. 13, 2024

    The Author Email: Huiqin Wang (hqwang@xauat.edu.cn)

    DOI:10.3788/LOP232548

    CSTR:32186.14.LOP232548

    Topics