Acta Optica Sinica, Volume. 44, Issue 17, 1732002(2024)
Electron and Ion Emission of Nanoparticles in Ultrafast and Intense Laser Field (Invited)
[3] Seiffert L. Semi-classical description of near-field driven attosecond photoemission from nanostructures[D](2018).
[15] Donnelly T D, Rust M, Weiner I et al. Hard X-ray and hot electron production from intense laser irradiation of wavelength-scale particles[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 34, L313-L320(2001).
[36] Hiramatsu H, Osterloh F E. A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants[J]. Chemistry of Materials, 16, 2509-2511(2004).
[39] Powell J. Strong-field driven dynamics of metal and dielectric nanoparticles[D](2017).
[40] Liu Q. Control and tracing of ultrafast electron dynamics in dielectric nanoparticles[D](2019).
[46] Eppink A T J B, Parker D H. Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen[J]. Review of Scientific Instruments, 68, 3477-3484(1997).
[48] Li H. Study on molecular photoionization in femtosecond laser filed[D](2013).
[52] Wells E, Rallis C E, Zohrabi M et al. Adaptive strong-field control of chemical dynamics guided by three-dimensional momentum imaging[J]. Nature Communications, 4, 2895(2013).
[53] Znakovskaya I, Spanner M, De S et al. Transition between mechanisms of laser-induced field-free molecular orientation[J]. Physical Review Letters, 112, 113005(2014).
[54] Grubisic A, Schweikhard V, Baker T A et al. Coherent multiphoton photoelectron emission from single Au nanorods: the critical role of plasmonic electric near-field enhancement[J]. ACS Nano, 7, 87-99(2013).
[55] Monti O L A, Baker T A, Nesbitt D J. Imaging nanostructures with scanning photoionization microscopy[J]. The Journal of Chemical Physics, 125, 154709(2006).
[57] Pettine J, Maioli P, Vallée F et al. Energy-resolved femtosecond hot electron dynamics in single plasmonic nanoparticles[J]. ACS Nano, 17, 10721-10732(2023).
[59] Pettine J, Grubisic A, Nesbitt D J. Polarization-controlled directional multiphoton photoemission from hot spots on single Au nanoshells[J]. The Journal of Physical Chemistry C, 122, 14805-14813(2018).
[70] Saydanzad E, Powell J, Summers A et al. Enhanced cutoff energies for direct and rescattered strong-field photoelectron emission of plasmonic nanoparticles[J]. Nanophotonics, 12, 1931-1942(2023).
[73] Rupp P, Seiffert L, Liu Q C et al. Quenching of material dependence in few-cycle driven electron acceleration from nanoparticles under many-particle charge interaction[J]. Journal of Modern Optics, 64, 995-1003(2017).
[74] Liu Q, Seiffert L, Trabattoni A et al. Attosecond streaking metrology with isolated nanotargets[J]. Journal of Optics, 20, 024002(2018).
[75] Seiffert L, Liu Q, Zherebtsov S et al. Attosecond chronoscopy of electron scattering in dielectric nanoparticles[J]. Nature Physics, 13, 766-770(2017).
[76] Schötz J, Seiffert L, Maliakkal A et al. Onset of charge interaction in strong-field photoemission from nanometric needle tips[J]. Nanophotonics, 10, 3769-3775(2021).
[77] Harlow F H. PIC and its progeny[J]. Computer Physics Communications, 48, 1-10(1988).
[78] Varin C, Peltz C, Brabec T et al. Attosecond plasma wave dynamics in laser-driven cluster nanoplasmas[J]. Physical Review Letters, 108, 175007(2012).
[79] Peltz C, Varin C, Brabec T et al. Time-resolved X-ray imaging of anisotropic nanoplasma expansion[J]. Physical Review Letters, 113, 133401(2014).
[81] Seiffert L, Henning P, Rupp P et al. Trapping field assisted backscattering in strong-field photoemission from dielectric nanospheres[J]. Journal of Modern Optics, 64, 1096-1103(2017).
[82] Powell J A, Summers A M, Liu Q C et al. Interplay of pulse duration, peak intensity, and particle size in laser-driven electron emission from silica nanospheres[J]. Optics Express, 27, 27124-27135(2019).
[83] Liu Q C, Zherebtsov S, Seiffert L et al. All-optical spatio-temporal control of electron emission from SiO2 nanospheres with femtosecond two-color laser fields[J]. New Journal of Physics, 21, 073011(2019).
[85] Rosenberger P, Rupp P, Ali R et al. Near-field induced reaction yields from nanoparticle clusters[J]. ACS Photonics, 7, 1885-1892(2020).
[87] Hickstein D D, Dollar F, Gaffney J A et al. Observation and control of shock waves in individual nanoplasmas[J]. Physical Review Letters, 112, 115004(2014).
[88] Kaplan A E, Dubetsky B Y, Shkolnikov P L. Shock shells in coulomb explosions of nanoclusters[J]. Physical Review Letters, 91, 143401(2003).
[89] Alghabra M S, Ali R, Kim V et al. Anomalous formation of trihydrogen cations from water on nanoparticles[J]. Nature Communications, 12, 3839(2021).
[90] Rosenberger P, Dagar R, Zhang W B et al. Imaging elliptically polarized infrared near-fields on nanoparticles by strong-field dissociation of functional surface groups[J]. The European Physical Journal D, Atomic, Molecular, and Optical Physics, 76, 109(2022).
[91] Zhang W B, Dagar R, Rosenberger P et al. All-optical nanoscopic spatial control of molecular reaction yields on nanoparticles[J]. Optica, 9, 551-560(2022).
[92] Han X, Huang H, Huang X et al. Orientation-dependent photoion emission from aerosolized nanostructures[J]. Advanced Optical Materials, 11, 2201260(2023).
Get Citation
Copy Citation Text
Fenghao Sun, Jinmei Zheng, Zhijie Yang, Guangqi Fan, Hui Li, Qingcao Liu. Electron and Ion Emission of Nanoparticles in Ultrafast and Intense Laser Field (Invited)[J]. Acta Optica Sinica, 2024, 44(17): 1732002
Category: Ultrafast Optics
Received: Jul. 12, 2024
Accepted: Aug. 23, 2024
Published Online: Sep. 12, 2024
The Author Email: Qingcao Liu (qingcao.liu@hit.edu.cn)
CSTR:32393.14.AOS241289