Optical Communication Technology, Volume. 46, Issue 5, 59(2022)
Spectral measurement system based on single photon detector array
[1] [1] MOON S, WON Y, KIM D Y. Analog mean-delay method for high-speed fluorescence lifetime measurement[J]. Optics Express, 2009, 17(4): 2834-2849.
[2] [2] HADFIELD R H. Single-photon detectors for optical quantum informa-tion applications[J]. Nature Photonics, 2009, 3(12): 696-705.
[3] [3] WAHL M. Modern TCSPC electronics: principles and acquisition mod-es[M]. Springer: Cham, 2014.
[4] [4] GODA K, JALALI B. Dispersive fourier transformation for fast contin-uous single-shot measurements[J]. Nature Photonics, 2013, 7(2): 102-112.
[5] [5] MENG Z, PETROV G I, CHENG S, et al. Lightweight Raman spectros-cope using time-correlated photon-counting detection[J]. Proceedings of the National Academy of Sciences, 2015, 112(40): 12315-12320.
[6] [6] AVENHAUS M, ECKSTEIN A, MOSLEY P J, et al. Fiber-assisted single-photon spectrograph[J]. Optics Letters, 2009, 34(18): 2873-2875.
[7] [7] TOUSSAINT J, DOCHOW S, LATKA I, et al. Proof of concept of fiber dispersed Raman spectroscopy using superconducting nanowire single-photon detectors[J]. Optics Express, 2015, 23(4): 5078-5090.
[8] [8] DAVIS A O C, SAULNIER P M, KARPINSKI M, et al. Pulsed single-photon spectrometer by frequency-to-time mapping using chirped fiber Bragg gratings[J]. Optics Express, 2017, 25(11): 12804-12811.
[9] [9] WANG C, GODA K, IBSEN M, et al. Dispersive fourier transformation in the 800 nm spectral range[EB/OL]. [2021-11-08]. https://ieeexplore.iee-e.org/document/6325378.
[10] [10] POEM E, HIEMSTRA T, ECKSTEIN A, et al. Free-space spectro-temporal and spatio-temporal conversion for pulsed light[J]. Optics Letters, 2016, 41(18): 4328-4331.
[11] [11] XU Y, MURDOCH S G. Real-time spectral analysis of ultrafast pulses using a free-space angular chirp-enhanced delay[J]. Optics Letters, 2019, 44(15): 3697-3700.
[13] [13] SHIRASIKI M. Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer[J]. Optics Letters, 1996, 21(5): 366-368.
[14] [14] XIAO S, WEINER A M, LIN C. A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory[J]. IEEE Journal of Quantum Electronics, 2004, 40(4): 420-426.
[15] [15] EISELE A, HENDERSON R, SCHMIDTKE B, et al. 185 MHz count rate 139 dB dynamic range single-photon avalanche diode with active quen-ching circuit in 130 nm CMOS technology[EB/OL]. [2021-11-08]. https://xueshu.baidu.com/usercenter/paper/show?paperid=71816dd5e4b8ef2f6f348a129a89fc28&site=xueshu_se.
[16] [16] LEE S H, GARDNER R P. A new G–M counter dead time model[J]. Applied Radiation and Isotopes, 2000, 53(4-5): 731-737.
[17] [17] DONATI S, MARTINI G, RANDONE E. Improving photodetector performance by means of microoptics concentrators[J]. Journal of Light-wave Technology, 2010, 29(5): 661-665.
[18] [18] SHIN D, XU F, VENKATRAMAN D, et al. Photon-efficient imaging with a single-photon camera[J]. Nature Communications, 2016, 7(1): 1-8.
Get Citation
Copy Citation Text
LIN Haiwei, FAN Xinyu, HE Zuyuan. Spectral measurement system based on single photon detector array[J]. Optical Communication Technology, 2022, 46(5): 59
Category:
Received: Nov. 8, 2021
Accepted: --
Published Online: Jan. 28, 2023
The Author Email: