Spectroscopy and Spectral Analysis, Volume. 37, Issue 11, 3386(2017)
Typical Ground Object Recognition Based on Principle Component Analysis and Fuzzy Clustering with Near-Infrared Diffuse Reflectance Spectroscopy
[1] [1] Vasques G M, Demattê J A M, Rossel R A V. Geoderma, 2014, 223: 73.
[8] [8] Lane M D, Bishop J L, Dyar M D, et al. American Mineralogist, 2015, 100(1): 66.
[9] [9] Scafutto R D P M, de Souza Filho C R, Rivard B. Remote Sensing of Environment, 2016, 179: 116.
[15] [15] Calderón F, Haddix M, Conant R, et al. Soil Science Society of America Journal, 2013, 77(5): 1591.
[17] [17] Chang C W, Laird D A, Mausbach M J, et al. Soil Science Society of America Journal, 2001, 65(2): 480.
[18] [18] Barnes R J, Dhanoa M S, Lister S J. Applied Spectroscopy, 1989, 43(5): 772.
[19] [19] Jia X, Richards J A. Geoscience and Remote Sensing, IEEE Transactions on, 1999, 37(1): 538.
[20] [20] Lasch P, Haensch W, Naumann D, et al. Biochimicaet Biophysica Acta (BBA)-Molecular Basis of Disease, 2004, 1688(2): 176.
Get Citation
Copy Citation Text
LI Chen-xi, SUN Zhe, JIANG Jing-ying, LIU Rong, CHEN Wen-liang, XU Ke-xin. Typical Ground Object Recognition Based on Principle Component Analysis and Fuzzy Clustering with Near-Infrared Diffuse Reflectance Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2017, 37(11): 3386
Received: Jul. 18, 2016
Accepted: --
Published Online: Jan. 4, 2018
The Author Email: Chen-xi LI (lichenxi@tju.edu.cn)